Keywords: Leibniz algebras, varieties of linear algebras, codimensions of varieties, growth of variety.
@article{VSGU_2014_3_a5,
author = {P. S. Kolesnikov and T. V. Skoraya},
title = {Codimensions growth estimate of the varieties of dialgebras},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {56--66},
year = {2014},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2014_3_a5/}
}
P. S. Kolesnikov; T. V. Skoraya. Codimensions growth estimate of the varieties of dialgebras. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 56-66. http://geodesic.mathdoc.fr/item/VSGU_2014_3_a5/
[1] Abanina L. E., Ratseev S. M., “Variety of Leibniz algebras connected with standard identities”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvennonauchnaya Seriya, 2005, no. 6(40), 36–50 | MR | Zbl
[2] Kolesnikov P. S., “Varieties of dialgebras and conformal algebras”, Sib. Math. Zhurnal, 49:2 (2008), 323–340 | MR
[3] Kolesnikov P. S., “Conformal representations of Leibniz algebras”, Sib. Math. Zhurnal, 49:3 (2008), 540–547 | MR | Zbl
[4] Mishchenko S. P., “Varieties of Lie algebras with weak growth of sequence of codimensions”, Vestnik MGU, 1982, no. 5, 63–66
[5] Mishchenko S. P., Cherevatenko O. Iv., “Varieties of Leibniz algebras of weak growth”, Vestnik Samarskogo gosudarstvennogo universiteta. Estestvennonauchnaya Seriya, 2006, no. 9(49), 19–23
[6] Mishchenko S. P., Cherevatenko O. Iv., “Necessary and sufficient conditions for a variety of Leibniz algebras to have polynomial growth”, Fundamental'naya i prikladnaya matematika, 12:8 (2006), 207–215
[7] Skoraya T. V., Frolova Yu. Yu., “About some varieties of Leibniz algebras”, Vestnik Samarskogo gosudarstvennogo universiteta. Estestvennonauchnaya Seriya, 2011, no. 5(86), 71–80
[8] Aymon M., Grivel P.-P., “Un théorème de Poincaré–Birkhoff–Witt pour les algèbres de Leibniz”, Comm. Algebra, 31:2 (2003), 527–544 | DOI | MR | Zbl
[9] C. Bai et al., “Splitting of operations, Manin products, and Rota–Baxter operators”, Int. Math. Res. Notices, 2013, no. 3, 485–524 | MR
[10] Barnes D. W., “Faithful representations of Leibniz algebras”, Proc. Amer. Math. Soc., 141 (2013), 2991–2995 | DOI | MR | Zbl
[11] Ginzburg V., Kapranov M., “Koszul duality for operads”, Duke Math. J., 76:1 (1994), 203–272 | DOI | MR | Zbl
[12] Gubarev V. Yu., Kolesnikov P. S., “Embedding of dendriform algebras into Rota–Baxter algebras”, Central European Journal of Mathematics, 11:2 (2013), 226–245 | DOI | MR | Zbl
[13] Gubarev V. Yu., Kolesnikov P. S., Operads of decorated trees and their duals, preprint, 2013 | MR
[14] Kac V. G., Vertex algebras for beginners, University Lecture Series, 10, AMS, Providence, RI, 1998 | MR | Zbl
[15] Kolesnikov P. S., Voronin V. Yu., “On special identities for dialgebras”, Linear and Multilinear Algebra, 61:3 (2013), 377–391 | DOI | MR | Zbl
[16] Loday J.-L., “Dialgebras”, Dialgebras and related operads, Lectures Notes in Math., 1763, Springer-Verlag, Berlin, 2001, 1–61 | DOI | MR
[17] Loday J.-L., Vallette B., Algebraic Operads, Grundlehren der mathematischen Wissenschaften, 346, Springer-Verlag, Berlin, 2012 | DOI | MR | Zbl
[18] Pozhidaev A., “0-dialgebras with bar-unity, Rota–Baxter and 3-Leibniz algebras”, Groups, Rings and Group Rings, eds. A. Giambruno et al., AMS, Providence, RI, 2009, 245–256 | DOI | MR | Zbl
[19] Roitman M., “On free conformal and vertex algebras”, J. Algebra, 217:2 (1999), 496–527 | DOI | MR | Zbl