Eigenvalue problem for the Laplace operator with displacement in derivatives
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 41-45
Voir la notice de l'article provenant de la source Math-Net.Ru
The statement of the problem on the determination of eigen- and adjoint-functions for Laplace operator in $s$-dimensional unit ball with displacement in derivatives is given. For $s=2$ the conditions are obtained for the existence of adjoint functions of the not higher than three order and their computation is made. The case of arbitrary $s$ is the subject of future work.
Keywords:
Laplace operator, unit ball in $R^s$, eigenvalues, eigen and adjoint functions for $s=2$.
@article{VSGU_2014_3_a3,
author = {A. V. Gerasimov and B. V. Loginov and N. N. Yuldashev},
title = {Eigenvalue problem for the {Laplace} operator with displacement in derivatives},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {41--45},
publisher = {mathdoc},
number = {3},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2014_3_a3/}
}
TY - JOUR AU - A. V. Gerasimov AU - B. V. Loginov AU - N. N. Yuldashev TI - Eigenvalue problem for the Laplace operator with displacement in derivatives JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2014 SP - 41 EP - 45 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2014_3_a3/ LA - ru ID - VSGU_2014_3_a3 ER -
%0 Journal Article %A A. V. Gerasimov %A B. V. Loginov %A N. N. Yuldashev %T Eigenvalue problem for the Laplace operator with displacement in derivatives %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2014 %P 41-45 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGU_2014_3_a3/ %G ru %F VSGU_2014_3_a3
A. V. Gerasimov; B. V. Loginov; N. N. Yuldashev. Eigenvalue problem for the Laplace operator with displacement in derivatives. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 41-45. http://geodesic.mathdoc.fr/item/VSGU_2014_3_a3/