Eigenvalue problem for the Laplace operator with displacement in derivatives
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 41-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The statement of the problem on the determination of eigen- and adjoint-functions for Laplace operator in $s$-dimensional unit ball with displacement in derivatives is given. For $s=2$ the conditions are obtained for the existence of adjoint functions of the not higher than three order and their computation is made. The case of arbitrary $s$ is the subject of future work.
Keywords: Laplace operator, unit ball in $R^s$, eigenvalues, eigen and adjoint functions for $s=2$.
@article{VSGU_2014_3_a3,
     author = {A. V. Gerasimov and B. V. Loginov and N. N. Yuldashev},
     title = {Eigenvalue problem for the {Laplace} operator with displacement in derivatives},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {41--45},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2014_3_a3/}
}
TY  - JOUR
AU  - A. V. Gerasimov
AU  - B. V. Loginov
AU  - N. N. Yuldashev
TI  - Eigenvalue problem for the Laplace operator with displacement in derivatives
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2014
SP  - 41
EP  - 45
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2014_3_a3/
LA  - ru
ID  - VSGU_2014_3_a3
ER  - 
%0 Journal Article
%A A. V. Gerasimov
%A B. V. Loginov
%A N. N. Yuldashev
%T Eigenvalue problem for the Laplace operator with displacement in derivatives
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2014
%P 41-45
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2014_3_a3/
%G ru
%F VSGU_2014_3_a3
A. V. Gerasimov; B. V. Loginov; N. N. Yuldashev. Eigenvalue problem for the Laplace operator with displacement in derivatives. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 41-45. http://geodesic.mathdoc.fr/item/VSGU_2014_3_a3/

[1] Bateman H., Erdelyi A., Higher transcendental functions, Nauka, M., 1966, 296 pp. | MR

[2] Vilenkin N. Ya., Special functions and group representation theory, Nauka, M., 1965, 585 pp. | MR

[3] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and series. Special functions, Nauka, M., 1983, 780 pp. | MR | Zbl

[4] Abramovitz M., Stegun I. A., Handbook on special functions, Nauka, M., 1979, 832 pp. | MR

[5] Loginov B. V., Nagorny A. M., “On a boundary value problem for Helmholtz equation with displacements within domain”, Mixed-type equations and free boundary problems, 1987, no. 4, 170–182

[6] Loginov B. V., Nagorny A. M., “On the spectrum of a problem of Bitsadze–Samarskiy”, Differential equations, 24:11 (1988), 2012–2016 | MR | Zbl