Field of invariants of Borelean group of adjoint representation of $GL(n,K)$
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 34-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to invariant theory problems, in particular to the problem of finding generators of invariant fields in an explicit form. The set of generators is given for invariant field of unitriangular group concerning the adjoint representation of $GL(n,K)$ group. Moreover, the set of generators of Borel group for the field of invariants is constructed and their algebraic independence is proved.
Mots-clés : Lie group, Borel group.
Keywords: adjoint representation, field of invariant, generators of the field of invariants
@article{VSGU_2014_3_a2,
     author = {K. A. Vyatkina},
     title = {Field of invariants of {Borelean} group of adjoint representation of $GL(n,K)$},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {34--40},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2014_3_a2/}
}
TY  - JOUR
AU  - K. A. Vyatkina
TI  - Field of invariants of Borelean group of adjoint representation of $GL(n,K)$
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2014
SP  - 34
EP  - 40
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2014_3_a2/
LA  - ru
ID  - VSGU_2014_3_a2
ER  - 
%0 Journal Article
%A K. A. Vyatkina
%T Field of invariants of Borelean group of adjoint representation of $GL(n,K)$
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2014
%P 34-40
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2014_3_a2/
%G ru
%F VSGU_2014_3_a2
K. A. Vyatkina. Field of invariants of Borelean group of adjoint representation of $GL(n,K)$. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 34-40. http://geodesic.mathdoc.fr/item/VSGU_2014_3_a2/

[1] Miyata K., “Invariants of certain groups”, Nagoya Math. J., 1:41 (1971), 69–73 | MR

[2] Vinberg E. B., Popov V. L., “Invariant theory”, Itogi Nauki i Tekhniki. VINITY. Sovrem. Probl. Mat. Fund. Napr., 55, 1989, 137–309

[3] Vyatkina K. A., Panov A. N., “Field of $U$-invariants of adjoint representation of the group $GL(n,K)$”, Matematicheskie Zametki, 93:1 (2013), 144–147 | DOI | Zbl