Reduction of mathematical model of robot with elastic joints
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 20-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model of $n$-joint manipulator with elastic joints with small dissipation is studied. Class of singularly perturbed differential systems that describe the dynamics of robot is singled out. For a given class of systems the existence and uniqueness of integral manifoldness of slow movement is established, its features are studied. It is proved that integral manifold may be constructed with any degree of accuracy as asymptotic decomposition in powers of small parameter. System that is used to describe movement in manifolds may be used as a reduced model of initial system.
Keywords: singularly perturbed systems, integral manifolds, asymptotic methods, reduction.
@article{VSGU_2014_3_a1,
     author = {O. V. Vidilina and N. V. Voropaeva},
     title = {Reduction of mathematical model of robot with elastic joints},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {20--33},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2014_3_a1/}
}
TY  - JOUR
AU  - O. V. Vidilina
AU  - N. V. Voropaeva
TI  - Reduction of mathematical model of robot with elastic joints
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2014
SP  - 20
EP  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2014_3_a1/
LA  - ru
ID  - VSGU_2014_3_a1
ER  - 
%0 Journal Article
%A O. V. Vidilina
%A N. V. Voropaeva
%T Reduction of mathematical model of robot with elastic joints
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2014
%P 20-33
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2014_3_a1/
%G ru
%F VSGU_2014_3_a1
O. V. Vidilina; N. V. Voropaeva. Reduction of mathematical model of robot with elastic joints. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 20-33. http://geodesic.mathdoc.fr/item/VSGU_2014_3_a1/

[1] Sobolev V. A., “Integral manifolds and decomposition of singularly perturbed systems”, Syst. Control Lett., 1984, no. 5, 169–279 | DOI | MR

[2] Strygin V. V., Sobolev V. A., Separation of motions by integral manifolds method, Nauka, M., 1988 | MR | Zbl

[3] Voropaeva N. V., Sobolev V. A., Geometrical decomposition of singularly perturbed systems, Fizmatlit, M., 2009 | Zbl

[4] Spong M. W., “Modeling and control of elastic joint robots”, Journal of Dynamic Systems, Measurement, and Control, 109 (1987), 310–319 | DOI | Zbl

[5] Spong M. W., Khorasani K., Kokotovic P. V., “An integral manifold approach to feedback control of flexible joint robots”, IEEE Journal of Robotics and Automation, 3:4 (1987), 291–301 | DOI | MR

[6] Moberg S., On modeling and control of flexible manipulators, Linkoping University, Linkoping, 2007

[7] M. P. Mortell et al., Singular Perturbation and Hysteresis, SIAM, Philadelphia, 2005 | MR | Zbl

[8] Osintsev M. S., Sobolev V. A., “Dimensionality reduction in optimal control and estimation problems for systems of solid bodies with low disipation”, Automation and remote control, 74:8 (2013), 1334–1347 | MR

[9] Voropaeva N. V., “Decomposition of multirate dynamic systems with small dissipation”, Vestnik SamGU. Estestvennonauchnaya seriya, 2013, no. 9/2(110), 5–10