Task on longitudinal vibrations of a rod with dynamic boundary conditions
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 9-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, one-dimensional longitudinal vibration of a solid rod fixed at the ends by means of local masses and springs is studied. As a mathematical model we use Rayleigh rod. The existence and uniqueness of a generalized solution are proved.
Keywords: Rayleigh rod, dynamic boundary conditions, generalized solution.
@article{VSGU_2014_3_a0,
     author = {A. B. Beylin and L. S. Pulkina},
     title = {Task on longitudinal vibrations of a rod with dynamic boundary conditions},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {9--19},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2014_3_a0/}
}
TY  - JOUR
AU  - A. B. Beylin
AU  - L. S. Pulkina
TI  - Task on longitudinal vibrations of a rod with dynamic boundary conditions
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2014
SP  - 9
EP  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2014_3_a0/
LA  - ru
ID  - VSGU_2014_3_a0
ER  - 
%0 Journal Article
%A A. B. Beylin
%A L. S. Pulkina
%T Task on longitudinal vibrations of a rod with dynamic boundary conditions
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2014
%P 9-19
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2014_3_a0/
%G ru
%F VSGU_2014_3_a0
A. B. Beylin; L. S. Pulkina. Task on longitudinal vibrations of a rod with dynamic boundary conditions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 9-19. http://geodesic.mathdoc.fr/item/VSGU_2014_3_a0/

[1] Tikhonov A. N., Samarsky A. A., Equations of mathematical physics, M., 2004

[2] Strett J. W., Theory of sound, Dover, N.Y., 1945 | MR

[3] Rao J. S., Advanced Theory of Vibration, Wiley, N.Y., 1992

[4] Fedotov I. A., Polyanin A. D., Shatalov M. Yu., “Theory of free and forced vibration of solid rod based on Rayleigh model”, DAN, 417:1 (2007), 56–61

[5] Ladyzhenskaya O. A., Boundary value problems of mathematical physics, M., 1973 | MR