Task on longitudinal vibrations of a rod with dynamic boundary conditions
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 9-19
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, one-dimensional longitudinal vibration of a solid rod fixed at the ends by means of local masses and springs is studied. As a mathematical model we use Rayleigh rod. The existence and uniqueness of a generalized solution are proved.
Keywords:
Rayleigh rod, dynamic boundary conditions, generalized solution.
@article{VSGU_2014_3_a0,
author = {A. B. Beylin and L. S. Pulkina},
title = {Task on longitudinal vibrations of a rod with dynamic boundary conditions},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {9--19},
year = {2014},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2014_3_a0/}
}
TY - JOUR AU - A. B. Beylin AU - L. S. Pulkina TI - Task on longitudinal vibrations of a rod with dynamic boundary conditions JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2014 SP - 9 EP - 19 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSGU_2014_3_a0/ LA - ru ID - VSGU_2014_3_a0 ER -
A. B. Beylin; L. S. Pulkina. Task on longitudinal vibrations of a rod with dynamic boundary conditions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 9-19. http://geodesic.mathdoc.fr/item/VSGU_2014_3_a0/
[1] Tikhonov A. N., Samarsky A. A., Equations of mathematical physics, M., 2004
[2] Strett J. W., Theory of sound, Dover, N.Y., 1945 | MR
[3] Rao J. S., Advanced Theory of Vibration, Wiley, N.Y., 1992
[4] Fedotov I. A., Polyanin A. D., Shatalov M. Yu., “Theory of free and forced vibration of solid rod based on Rayleigh model”, DAN, 417:1 (2007), 56–61
[5] Ladyzhenskaya O. A., Boundary value problems of mathematical physics, M., 1973 | MR