Dirichlet problem for Pulkin’s equation in a rectangular domain
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2014), pp. 91-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the given article for the mixed-type equation with a singular coefficient the first boundary value problem is studied. On the basis of property of completeness of the system of own functions of one-dimensional spectral problem the criterion of uniqueness is established. The solution the problem is constructed as the sum of series of Fourier–Bessel. At justification of convergence of a row there is a problem of small denominators. In connection with that the assessment about apartness of small denominator from zero with the corresponding asymptotic which allows to prove the convergence of the series constructed in a class of regular solutions under some restrictions is given.
Keywords: equation of a mixed type, Dirichlet problem, spectral method, series of Fourier–Bessel, uniqueness
Mots-clés : existence.
@article{VSGU_2014_10_a9,
     author = {R. M. Safina},
     title = {Dirichlet problem for {Pulkin{\textquoteright}s} equation in a rectangular domain},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {91--101},
     year = {2014},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2014_10_a9/}
}
TY  - JOUR
AU  - R. M. Safina
TI  - Dirichlet problem for Pulkin’s equation in a rectangular domain
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2014
SP  - 91
EP  - 101
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VSGU_2014_10_a9/
LA  - ru
ID  - VSGU_2014_10_a9
ER  - 
%0 Journal Article
%A R. M. Safina
%T Dirichlet problem for Pulkin’s equation in a rectangular domain
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2014
%P 91-101
%N 10
%U http://geodesic.mathdoc.fr/item/VSGU_2014_10_a9/
%G ru
%F VSGU_2014_10_a9
R. M. Safina. Dirichlet problem for Pulkin’s equation in a rectangular domain. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2014), pp. 91-101. http://geodesic.mathdoc.fr/item/VSGU_2014_10_a9/

[1] Pulkin S. P., “Uniqueness of solution of a singular problem of Gellerstedt”, News of Higher Educational Institutions. Mathematics, 1960, no. 6(19), 214–225 (in Russian) | MR | Zbl

[2] Frankl F. I., The selected works on gas dynamics, Nauka, M., 1973, 711 pp. (in Russian)

[3] Bitsadze A. V., “Incorrectness of the Dirichlet problem for the equations of mixed type”, DAN of USSR, 122:2 (1953), 167–170 (in Russian)

[4] Shabat B. V., “The examples of solutions of the Dirichlet problem for mixed-type equation”, DAN of USSR, 112:3 (1957), 386–389 (in Russian) | MR | Zbl

[5] Vakhaniya N. N., “On one singular problem for the equation of mixed type”, Proceedings of AS of the Georgian Soviet Socialist Republic, 3, 1963, 69–80 (in Russian) | MR

[6] Cannon J. R., “Dirichlet problem for an equation of mixed type with a discontininius coefficient”, Ann. Math. pura ed appl., 62 (1963), 371–377 | DOI | MR | Zbl

[7] Nakhushev A. M., “Criterion of uniqueness of solution of Dirichlet problem for the equation of the mixed type in the cylindrical domain”, Differential equations, 6:1 (1970), 190–191 (in Russian) | MR | Zbl

[8] Hachev M. M., “Dirichlet problem for the Tricomi equation in a rectangle”, Differential equations, 11:1 (1975), 151–160 (in Russian) | MR | Zbl

[9] Hachev M. M., “About the Dirichlet problem for an equation of a mixed type”, Differential equations, 12:1 (1976), 137–143 (in Russian) | MR

[10] Soldatov A. P., “Dirichlet type problem for the equation of Lavrentiev–Bitsadze. I: The uniqueness theorems”, DAN of USSR, 332:6 (1993), 696–698 (in Russian) | Zbl

[11] Soldatov A. P., “Dirichlet type problem for the equation of Lavrentiev–Bitsadze. II: The existence theorems”, DAN of USSR, 333:1 (1993), 16–18 (in Russian) | Zbl

[12] Hachev M. M., The first boundary value problem for the equations of the mixed type, Izd. Elbrus, Nalchik, 1998, 168 pp. (in Russian)

[13] Sabitov K. B., “The Dirichlet problem for mixed-type equation in a rectangular domain”, DAN of USSR, 413:1 (2007), 23–26 (in Russian) | Zbl

[14] Sabitov K. B., Suleimanova A. Kh., “The Dirichlet problem for a mixed-type equation of the second kind in a rectangular domain”, News of Higher Educational Institutions. Mathematics, 2007, no. 4, 45–53 (in Russian)

[15] Sabitov K. B., Suleimanova A. Kh., “The Dirichlet problem for a mixed-type equation with characteristic degeneration in a rectangular domain”, News of Higher Educational Institutions. Mathematics, 2009, no. 11, 43–52 (in Russian)

[16] Sabitov K. B., Vagapova E. V., “Dirichlet problem for an equation of mixed type with two degeneration lines in a rectangular domain”, Differential equations, 49:1 (2013), 68–78 (in Russian) | MR | Zbl

[17] Khairyllin R. S., “On the Dirichlet problem for mixed-type equation of the second kind with strong degeneration”, Differential equations, 49:4 (2013), 528–534 (in Russian) | Zbl

[18] R.M. Safina, “A criterion of uniqueness of solution to the Dirichlet problem with the axial symmetry for the three-dimensional mixed type equation with the Bessel operator”, News of Higher Educational Institutions. Mathematics, 2014, no. 6, 78–83 (in Russian) | MR

[19] Olver F., Introduction to asymptotic methods and special functions, Izd-vo Mir, M., 1986, 381 pp. (in Russian)