Condition of finiteness of colength of variety of Leibnitz algebras
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2014), pp. 84-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the varieties of Leibnitz algebras over a field of zero characteristic. All information about the variety in case of zero characteristic of the base field is contained in the space of multilinear elements of its relatively free algebra. Multilinear component of variety is considered as a module of symmetric group and splits into a direct sum of irreducible submodules, the sum of multiplicities of which is called colength of variety. This paper investigates the identities that are performed in varieties with finite colength and also the relationship of this varieties with known varieties of Lie and Leibnitz algebras with this property. We prove necessary and sufficient condition for a finiteness of colength of variety of Leibnitz algebras.
Keywords: linear algebra, Leibnitz algebra, Lie algebra, variety of algebras, multilinear part of variety, Yung diagrams, numerical characteristics of variety, colength of variety.
@article{VSGU_2014_10_a8,
     author = {A. V. Polovinkina and T. V. Skoraya},
     title = {Condition of finiteness of colength of variety of {Leibnitz} algebras},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {84--90},
     year = {2014},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2014_10_a8/}
}
TY  - JOUR
AU  - A. V. Polovinkina
AU  - T. V. Skoraya
TI  - Condition of finiteness of colength of variety of Leibnitz algebras
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2014
SP  - 84
EP  - 90
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VSGU_2014_10_a8/
LA  - ru
ID  - VSGU_2014_10_a8
ER  - 
%0 Journal Article
%A A. V. Polovinkina
%A T. V. Skoraya
%T Condition of finiteness of colength of variety of Leibnitz algebras
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2014
%P 84-90
%N 10
%U http://geodesic.mathdoc.fr/item/VSGU_2014_10_a8/
%G ru
%F VSGU_2014_10_a8
A. V. Polovinkina; T. V. Skoraya. Condition of finiteness of colength of variety of Leibnitz algebras. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2014), pp. 84-90. http://geodesic.mathdoc.fr/item/VSGU_2014_10_a8/

[1] Giambruno A., Zaicev M. V., “Polynomail identities and Asymptotic Methods”, Mathematical Surveys and Monographs, 122, American Mathematical Society, Providence, RI, 2005, 352 | MR | Zbl

[2] Bahturin Yu. A., Identities in Lie algebras, Nauka, M., 1985 (in Russian)

[3] Blokh A. M., “On one generalization of the concept of Lie algebras”, Reports of Academy of Sciences of the USSR, 18:3 (1965), 471–473 (in Russian)

[4] Maltsev AS. I., “On algebras defined by identities”, Mathematical Collected Book, 26:1 (1950), 19–33 (in Russian) | MR | Zbl

[5] Shvetsova A. V., “The necessary condition of finiteness of colength of variety of Leibnitz algebras”, Vestnik of MSABA, 2013, no. 2(22), 197–202 (in Russian)

[6] Ratseev S. M., “The growth of varieties of Leibnitz algebras”, Vestnik of Samara State University, 2006, no. 6(46), 70–77 (in Russian)

[7] Khanina I. R., “The necessary condition of finiteness of colength of variety of Lie algebras in case of zero characteristic”, Fundamental and Applied Mathematics, 2000, no. 2, 607–616 (in Russian)

[8] Skoraya T. V., Shvetsova A. V., “New properties of varieties of Leibnitz algebras”, Proceedings of Saratov State University. Series: Mathematics, mechanics, informatics, 2013, no. 4(2), 124–129 (in Russian)

[9] Berele A., “Homogeneous polynomial identities”, Israel journal of mathematics, 42:3 (1982), 285–272 | DOI | MR

[10] Higgins P. J., “Lie rings satisfying the Engel condition”, Proc. Cambridge Phil. Soc., 1954, no. 1, 8–15 | DOI | MR | Zbl