Difference-differential game of convergence — evasion in Hilbert space, II
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2014), pp. 74-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For conflict operated differential system with delay studying of dynamic game of convergence-evasion relatively functional goal set, now regarding evasion and solution of a problem of existence of alternative in the case under consideration is continued. In the work realization of condition of saddle point relatively to the right part of operated system is not supposed. Earlier similar tasks were set and solved for finite-dimensional space at scientific school of the academician N. N. Krasovsky. For a case of infinite-dimensional space of continuous functions similar tasks were considered by the author. In the suggested work at theorem proving about convergence–evasion, the norm of Hilbert space is used.
Keywords: differential game, aftereffect, positional procedure, Hilbert space.
Mots-clés : norm
@article{VSGU_2014_10_a7,
     author = {V. L. Pasikov},
     title = {Difference-differential game of convergence~{\textemdash} evasion in {Hilbert} {space,~II}},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {74--83},
     year = {2014},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2014_10_a7/}
}
TY  - JOUR
AU  - V. L. Pasikov
TI  - Difference-differential game of convergence — evasion in Hilbert space, II
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2014
SP  - 74
EP  - 83
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VSGU_2014_10_a7/
LA  - ru
ID  - VSGU_2014_10_a7
ER  - 
%0 Journal Article
%A V. L. Pasikov
%T Difference-differential game of convergence — evasion in Hilbert space, II
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2014
%P 74-83
%N 10
%U http://geodesic.mathdoc.fr/item/VSGU_2014_10_a7/
%G ru
%F VSGU_2014_10_a7
V. L. Pasikov. Difference-differential game of convergence — evasion in Hilbert space, II. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2014), pp. 74-83. http://geodesic.mathdoc.fr/item/VSGU_2014_10_a7/

[1] Ushakov V. N., “Minimax differential game of convergence-evasion and local conditions for solvability of problems of convergence-evasion”, Differential sistems of Management, AN SSSR UNTs, Sverdlovsk, 1979, 87–93 (in Russian)

[2] Maksimov V. I., “Alternative in difference-differential game of convergence-evasion with operational goal”, PMM, 40:6 (1976), 987–994 (in Russian) | MR | Zbl

[3] Pasikov V. L., “Alternative in the minimax differential game for systems with aftereffect”, News of Higher Educational Institutions. Mathematics, 1983, no. 8, 45–50 (in Russian) | MR

[4] Pasikov V. L., “Minimax differential game of convergence-evasion for systems with aftereffect”, Riazanskii gospedinstitut, Ryazan, 1982, 40 (in Russian)

[5] Pasikov V. L., “Difference-differential game of convergence-evasion in Hilbert space, I”, Vestnik SamSU, 2013, no. 3(104), 33–41 (in Russian)

[6] Krasovskii N. N., Subbotin A. I., Positional differential games, Nauka, M., 1974, 456 pp. (in Russian)

[7] Osipov Yu. S., “Alternative in difference-differential game”, DAS USSR, 197:5 (1971), 1022–1026 (in Russian)

[8] Osipov Yu. S., “Differential game of guidance for systems with aftereffect”, PMM, 35:1 (1971), 123–131 (in Russian) | MR | Zbl

[9] Osipov Yu. S., “On regularization of control in difference-differential game of convergence-evasion”, Differentsial'nye uravneniia, 12:6 (1976), 1000–1006 (in Russian)

[10] Osipov Yu. S., “Differential games of systems with aftereffect”, DAS USSR, 196:4 (1971), 779–782 (in Russian) | MR | Zbl