Metric and topological freedom for sequential operator spaces
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2014), pp. 55-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In 2002 Anselm Lambert in his PhD thesis [1] introduced the definition of sequential operator space and managed to establish a considerable amount of analogs of corresponding results in operator space theory. Informally speaking, the category of sequential operator spaces is situated ”between” the categories of normed and operator spaces. This article aims to describe free and cofree objects for different versions of sequential operator space homology. First of all, we will show that duality theory in above-mentioned category is in many respects analogous to that in the category of normed spaces. Then, based on those results, we will give a full characterization of both metric and topological free and cofree objects.
Keywords: sequential operator space, sequentially bounded operator, duality, framed category, freedom, cofreedom.
Mots-clés : admissible epimorphism, admissible monomorphism
@article{VSGU_2014_10_a5,
     author = {N. T. Nemesh and S. M. Shteiner},
     title = {Metric and topological freedom for sequential operator spaces},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {55--67},
     year = {2014},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2014_10_a5/}
}
TY  - JOUR
AU  - N. T. Nemesh
AU  - S. M. Shteiner
TI  - Metric and topological freedom for sequential operator spaces
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2014
SP  - 55
EP  - 67
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VSGU_2014_10_a5/
LA  - ru
ID  - VSGU_2014_10_a5
ER  - 
%0 Journal Article
%A N. T. Nemesh
%A S. M. Shteiner
%T Metric and topological freedom for sequential operator spaces
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2014
%P 55-67
%N 10
%U http://geodesic.mathdoc.fr/item/VSGU_2014_10_a5/
%G ru
%F VSGU_2014_10_a5
N. T. Nemesh; S. M. Shteiner. Metric and topological freedom for sequential operator spaces. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2014), pp. 55-67. http://geodesic.mathdoc.fr/item/VSGU_2014_10_a5/

[1] Lambert A., Operatorfolgenräume. Eine Kategorie auf dem Weg von den Banach-Räumen zu den Operatorräumen, Dissertation zur Erlangung des Grades Doktor der Naturwissenschaften der Technisch-Naturwissenschaftlichen Fakultät I der Universität des Saarlandes, Saarbrücken, 2002

[2] Effros E. G., Ruan Z.-J., Operator spaces, Clarendon Press, 2000 | MR | Zbl

[3] Paulsen V., Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, 78, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[4] Pisier G., Introduction to operator space theory, London Mathematical Society Lecture Note Series, 294, Cambridge University Press, Cambridge, 2003 | MR | Zbl

[5] Helemskii A. Ya., Lectures and exercises on functional analysis, Translations of Mathematical Monographs, 233, American mathematical society, Providence, RI, 2006 | MR | Zbl

[6] Rudin W., Functional analysis, McGraw-Hill, New York, 1973 | MR | Zbl

[7] Mac Lane S., Categories for the working mathematician, Springer-Verlag, Berlin, 1971 | MR | Zbl

[8] William L. F., Schanuel S. H., Conceptual Mathematics: A First Introduction to Categories, Cambridge University Press, Cambridge, 2009 | MR | Zbl

[9] Helemskii A. Ya., “Metric freeness and projectivity for classical and quantum normed modules”, Sbornik: Mathematics, 204:7 (2013), 1056 | DOI | DOI | MR | Zbl

[10] Shteiner S. M., “Topological freedom for classical and quantum notmed modules”, Vestnik of SamSU, 2013, no. 9/1 (110), 49–57 (in Russian) | MR