On spaces of modular forms of even weight
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2014), pp. 38-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article we study the structure of space of cusp forms of an even weight and a level $N$with the help of cusp forms of minimal weight of the same level. The exact cutting is studied when each cusp form is a product of fixed function and a modular form of a smaller weight. Except the levels 17 and 19 the cutting function is a multiplicative eta – product. In the common case the space $f(z)M_{k-l}(\Gamma_0(N))$ is not equal to the space $S_k(\Gamma_0(N)), $ the structure of additional space is competely studied. The result is depended on the value of the level modulo 12. Dimensions of spaces are calculated by the Cohen–Oesterle formula, the orders in cusps are calculated by the Biagioli formula.
Keywords: modular forms, cusp forms, Dedekind eta-function, Eisenstein series, divisor of function, structure theorems, Cohen–Oesterle formula.
Mots-clés : parabolic vertex
@article{VSGU_2014_10_a3,
     author = {G. V. Voskresenskaya},
     title = {On spaces of modular forms of even weight},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {38--47},
     year = {2014},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2014_10_a3/}
}
TY  - JOUR
AU  - G. V. Voskresenskaya
TI  - On spaces of modular forms of even weight
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2014
SP  - 38
EP  - 47
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VSGU_2014_10_a3/
LA  - ru
ID  - VSGU_2014_10_a3
ER  - 
%0 Journal Article
%A G. V. Voskresenskaya
%T On spaces of modular forms of even weight
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2014
%P 38-47
%N 10
%U http://geodesic.mathdoc.fr/item/VSGU_2014_10_a3/
%G ru
%F VSGU_2014_10_a3
G. V. Voskresenskaya. On spaces of modular forms of even weight. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2014), pp. 38-47. http://geodesic.mathdoc.fr/item/VSGU_2014_10_a3/

[1] Ono K., The web of modularity: arithmetic of the coefficients of modular forms and q-series, A.M.S., Providence, 2004, 216 pp. | MR | Zbl

[2] Koblitz N., Introduction in elliptic curves and modular forms, Mir, M., 1988, 320 pp. (in Russian)

[3] Knapp A., Elliptic curves, Faktorial Press, M., 2004, 488 pp. (in Russian)

[4] Voskresenskaya G. V., “Spaces of modular forms containing multiplicative eta-products”, Vestnik of Samara State University. Natural Science Series, 2012, no. 6(97), 5–11 (in Russian)

[5] Voskresenskaya G. V., “One special class of modular forms and group representations”, Journal de Theorie des Nombres de Bordeaux, 11 (1999), 247–262 | DOI | MR | Zbl

[6] Cohen H., Oesterle J., “Dimensions des espaces de formes modulaires”, LNM, 627 (1976), 69–78 | MR

[7] Biagioli A. J. F., “The construction of modular forms as products of transforms of the Dedekind eta-function”, Acta Arithm., LIV:4 (1990), 273–300 | MR | Zbl

[8] Mason G., “$M_{24}$ and certain automorphic forms”, Contemp. Math., 45 (1985), 223–244 | DOI | MR | Zbl

[9] Gordon B., Sinor D., “Multiplicative properties of $\eta$-products”, L.N.M., 1395 (1987), 173–200 | MR

[10] Dummit D., Kisilevsky H., MasKay J., “Multiplicative products of $\eta$-functions”, Contemp. Math., 45, 1985, 89–98 | DOI | MR | Zbl