Mathematical modeling of a medium interaction onto rigid body and new two-parametric family of phase patterns
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2014), pp. 109-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Mathematical model of a medium interaction onto a rigid body with the part of its interior surface as the cone is considered. The complete system of body motion equations which consists of dynamic and kinematic parts is presented. The dynamic part is formed by the independent three-order subsystem. New family of phase patterns on phase cylinder of quasi-velocities is found. This family consists of infinite set of topologically non-equivalent phase patterns. Furthermore, under the transition from one pattern type to another one, the reconstruction of topological type occurs by the degenerate way. Also the problem of key regime stability, i.e., rectilinear translational deceleration, is discussed.
Keywords: rigid body, resisting medium, dynamical system, phase pattern, topological equivalence.
@article{VSGU_2014_10_a11,
     author = {A. V. Andreev and M. V. Shamolin},
     title = {Mathematical modeling of a medium interaction onto rigid body and new two-parametric family of phase patterns},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {109--115},
     year = {2014},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2014_10_a11/}
}
TY  - JOUR
AU  - A. V. Andreev
AU  - M. V. Shamolin
TI  - Mathematical modeling of a medium interaction onto rigid body and new two-parametric family of phase patterns
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2014
SP  - 109
EP  - 115
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VSGU_2014_10_a11/
LA  - ru
ID  - VSGU_2014_10_a11
ER  - 
%0 Journal Article
%A A. V. Andreev
%A M. V. Shamolin
%T Mathematical modeling of a medium interaction onto rigid body and new two-parametric family of phase patterns
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2014
%P 109-115
%N 10
%U http://geodesic.mathdoc.fr/item/VSGU_2014_10_a11/
%G ru
%F VSGU_2014_10_a11
A. V. Andreev; M. V. Shamolin. Mathematical modeling of a medium interaction onto rigid body and new two-parametric family of phase patterns. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2014), pp. 109-115. http://geodesic.mathdoc.fr/item/VSGU_2014_10_a11/

[1] Shamolin M. V., “New integrable cases and families of portraits in the plane and spatial dynamics of a rigid body interacting with a medium”, Journal of Mathematical Sciences, 114:1 (2003), 919–975 | DOI | MR | Zbl

[2] Shamolin M. V., “Variety of cases of integrability in dynamics of lower-, and multi-dimensional body in nonconservative field”, Dynamical Systems, Summary of science and technology. Ser.: Contemporary Mathematics and its Applications. Subject reviews, 125, 2013, 5–254 (in Russian) | MR

[3] Shamolin S. V., “New cases of integrability in dynamics of a rigid body with the cone form of its shape interacting with a medium”, PAMM (Proc. Appl. Math. Mech.), 2009, no. 9, 139–140 | DOI

[4] Shamolin M. V., “Variety of types of phase portraits in the dynamics of a rigid body interacting with a resisting medium”, Proceedings of RAS, 349:2 (1996), 193–197 (in Russian) | Zbl

[5] Shamolin M. V., “A new two-parameter family of phase portraits in the problem of a body motion in a medium”, Proceedings of RAS, 337:5 (1994), 611–614 (in Russian) | Zbl

[6] Shamolin M. V., “Dynamical systems with variable dissipation: approaches, methods, and applications”, Fundamental and Applied Mathematics, 14:3 (2008), 3–237 (in Russian) | Zbl

[7] Arnold V. I., Kozlov V. V., Neyshtadt A. I., Mathematical aspects in classical and celestial mechanics, VINITI, M., 1985, 304 pp. (in Russian)

[8] Trofimov V. V., “Symplectic structures on symmetruc spaces of automorphysm groups”, Vestnik of Moscow State University. Ser. 1. Mathematics. Mechanics, 1984, no. 6, 31–33 (in Russian) | MR

[9] Trofimov V. V., Shamolin M. V., “Geometrical and dynamical invariants of integrable Hamiltonian and dissipative systems”, Fundamental and Applied Mathematics, 16:4 (2010), 3–229 (in Russian)

[10] Shamolin M. V., Methods of analysis of various dissipation dynamical systems in dynamics of a rigid body, Ekzamen, M., 2007, 352 pp. (in Russian)