@article{VSGU_2014_10_a11,
author = {A. V. Andreev and M. V. Shamolin},
title = {Mathematical modeling of a medium interaction onto rigid body and new two-parametric family of phase patterns},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {109--115},
year = {2014},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2014_10_a11/}
}
TY - JOUR AU - A. V. Andreev AU - M. V. Shamolin TI - Mathematical modeling of a medium interaction onto rigid body and new two-parametric family of phase patterns JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2014 SP - 109 EP - 115 IS - 10 UR - http://geodesic.mathdoc.fr/item/VSGU_2014_10_a11/ LA - ru ID - VSGU_2014_10_a11 ER -
%0 Journal Article %A A. V. Andreev %A M. V. Shamolin %T Mathematical modeling of a medium interaction onto rigid body and new two-parametric family of phase patterns %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2014 %P 109-115 %N 10 %U http://geodesic.mathdoc.fr/item/VSGU_2014_10_a11/ %G ru %F VSGU_2014_10_a11
A. V. Andreev; M. V. Shamolin. Mathematical modeling of a medium interaction onto rigid body and new two-parametric family of phase patterns. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2014), pp. 109-115. http://geodesic.mathdoc.fr/item/VSGU_2014_10_a11/
[1] Shamolin M. V., “New integrable cases and families of portraits in the plane and spatial dynamics of a rigid body interacting with a medium”, Journal of Mathematical Sciences, 114:1 (2003), 919–975 | DOI | MR | Zbl
[2] Shamolin M. V., “Variety of cases of integrability in dynamics of lower-, and multi-dimensional body in nonconservative field”, Dynamical Systems, Summary of science and technology. Ser.: Contemporary Mathematics and its Applications. Subject reviews, 125, 2013, 5–254 (in Russian) | MR
[3] Shamolin S. V., “New cases of integrability in dynamics of a rigid body with the cone form of its shape interacting with a medium”, PAMM (Proc. Appl. Math. Mech.), 2009, no. 9, 139–140 | DOI
[4] Shamolin M. V., “Variety of types of phase portraits in the dynamics of a rigid body interacting with a resisting medium”, Proceedings of RAS, 349:2 (1996), 193–197 (in Russian) | Zbl
[5] Shamolin M. V., “A new two-parameter family of phase portraits in the problem of a body motion in a medium”, Proceedings of RAS, 337:5 (1994), 611–614 (in Russian) | Zbl
[6] Shamolin M. V., “Dynamical systems with variable dissipation: approaches, methods, and applications”, Fundamental and Applied Mathematics, 14:3 (2008), 3–237 (in Russian) | Zbl
[7] Arnold V. I., Kozlov V. V., Neyshtadt A. I., Mathematical aspects in classical and celestial mechanics, VINITI, M., 1985, 304 pp. (in Russian)
[8] Trofimov V. V., “Symplectic structures on symmetruc spaces of automorphysm groups”, Vestnik of Moscow State University. Ser. 1. Mathematics. Mechanics, 1984, no. 6, 31–33 (in Russian) | MR
[9] Trofimov V. V., Shamolin M. V., “Geometrical and dynamical invariants of integrable Hamiltonian and dissipative systems”, Fundamental and Applied Mathematics, 16:4 (2010), 3–229 (in Russian)
[10] Shamolin M. V., Methods of analysis of various dissipation dynamical systems in dynamics of a rigid body, Ekzamen, M., 2007, 352 pp. (in Russian)