Well-posedness of Poincare problem in the cylindrical domain for a class of multi-dimensional elliptic equations
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2014), pp. 17-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The boundary value problems for second order elliptic equations in domains with edges are well studied. For elliptic equations, boundary-value problems on the plane were shown to be well posed by using methods from the theory of analytic functions of complex variable. When the number of independent variables is greater than two, difficulties of fundamental nature arise. Highly attractive and convenient method of singular integral equations can hardly be applied, because the theory of multidimensional singular integral equations is still incomplete. In this paper with the help of the method suggested by the author, the unique solvability is shown and explicit form of classical solution of Poincare problem in a cylindrical domain for a one class of multidimensional elliptic equations is received.
Keywords: well-posedness, multi-dimensional elliptic equations, function, cylindrical domain, density, operators, systems of functions.
Mots-clés : equation
@article{VSGU_2014_10_a1,
     author = {S. A. Aldashev},
     title = {Well-posedness of {Poincare} problem in the cylindrical domain for a class of multi-dimensional elliptic equations},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {17--25},
     year = {2014},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2014_10_a1/}
}
TY  - JOUR
AU  - S. A. Aldashev
TI  - Well-posedness of Poincare problem in the cylindrical domain for a class of multi-dimensional elliptic equations
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2014
SP  - 17
EP  - 25
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VSGU_2014_10_a1/
LA  - ru
ID  - VSGU_2014_10_a1
ER  - 
%0 Journal Article
%A S. A. Aldashev
%T Well-posedness of Poincare problem in the cylindrical domain for a class of multi-dimensional elliptic equations
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2014
%P 17-25
%N 10
%U http://geodesic.mathdoc.fr/item/VSGU_2014_10_a1/
%G ru
%F VSGU_2014_10_a1
S. A. Aldashev. Well-posedness of Poincare problem in the cylindrical domain for a class of multi-dimensional elliptic equations. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2014), pp. 17-25. http://geodesic.mathdoc.fr/item/VSGU_2014_10_a1/

[1] Maz'ya V. G., Plamenevesky B. A., “On the problem with directional derivative in a domain with piecewise smooth boundaries”, Functional analysis, 5:3 (1971), 102–103 (in Russian) | MR

[2] Maz'ya D., Plamenevsky B. A., “Shauderov estimates of solutions for elliptic boundary value problems in domains with edges on the boundary”, Proceedings of S. L. Sobolev's seminar, 2, 1978, 69–102 (in Russian) | Zbl

[3] Kondratiev V. A., Oleinik O. A., “Boundary value problems for partial differential equations in non-smooth domains”, UMN, 38:2(230) (1983), 3–76 (in Russian) | MR

[4] Aldashev S. A., “On the Darboux problem for a class of multidimensional hyperbolic equations”, Differential Equations, 34 (1998), 64–68 (in Russian) | MR

[5] Aldashev S. A., Boundary value problems for multidimensional hyperbolic and mixed type equations, Gylym, Almaty, 1994, 170 pp. (in Russian)

[6] Aldashev S. A., Degenerate multidimensional hyperbolic equations, ZKATU, Oral, 2007, 139 pp. (in Russian)

[7] Michlin S. G., Multidimensional singular integrals and integral equations, Fizmatgiz, M., 1962, 254 pp. (in Russian) | MR

[8] Kamke E., Handbook on ordinary differential equations, Nauka, M., 1965, 703 pp. (in Russian) | MR

[9] Bateman H., Erdelyi A., Higher transcendental functions, Nauka, M., 1974, 295 pp. (in Russian) | MR

[10] Kolmogorov A. N., Fomin S. V., Elements of the theory of functions and functional analysis, Nauka, M., 1976, 543 pp. (in Russian) | MR

[11] Tikhonov A. N., Samarsky A. A., Equations of mathematical physics, Nauka, M., 1966, 724 pp. (in Russian) | MR

[12] Smirnov V. I., The course of higher mathematics, in 5 vol., v. 4, Nauka, M., 1981, 550 pp. (in Russian)