Definition of stagnant zone of flow of viscous incompressible microstructural liquid between coaxial cylinders in the presence of pressure gradient
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2013), pp. 74-79
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work mathematical modeling of flow of viscous liquid between coaxial cylinders in the presence of homogeneous structure and pressure gradient. Problem definition in the rate of movement is formulated. Finite-difference scheme is received. Numerical computation is received. The geometrical dimensions of zone of liquid flow with low speed are shown.
Mots-clés :
stagnant zone, microstructure, viscous liquid.
@article{VSGU_2013_9_a9,
author = {M. V. Egorov},
title = {Definition of stagnant zone of flow of viscous incompressible microstructural liquid between coaxial cylinders in the presence of pressure gradient},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {74--79},
year = {2013},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2013_9_a9/}
}
TY - JOUR AU - M. V. Egorov TI - Definition of stagnant zone of flow of viscous incompressible microstructural liquid between coaxial cylinders in the presence of pressure gradient JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2013 SP - 74 EP - 79 IS - 9 UR - http://geodesic.mathdoc.fr/item/VSGU_2013_9_a9/ LA - ru ID - VSGU_2013_9_a9 ER -
%0 Journal Article %A M. V. Egorov %T Definition of stagnant zone of flow of viscous incompressible microstructural liquid between coaxial cylinders in the presence of pressure gradient %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2013 %P 74-79 %N 9 %U http://geodesic.mathdoc.fr/item/VSGU_2013_9_a9/ %G ru %F VSGU_2013_9_a9
M. V. Egorov. Definition of stagnant zone of flow of viscous incompressible microstructural liquid between coaxial cylinders in the presence of pressure gradient. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2013), pp. 74-79. http://geodesic.mathdoc.fr/item/VSGU_2013_9_a9/
[1] Chetverushkin B. N., “Minimalnye razmery v zadachakh mekhaniki sploshnoi sredy”, Matematicheskoe modelirovanie, 17:4 (2005), 27–39 | Zbl
[2] M. I. Bykova i dr., Techenie i deformirovanie materialov odnorodnoi mikrostruktury, IPTs Voronezhskogo gosudarstvennogo universiteta, Voronezh, 2010, 132–166
[3] Elizarova T. G., Lektsii. Matematicheskoe modelirovanie i chislennye metody v dinamike zhidkosti i gaza, Izd-vo MGU, M., 2005, 224 pp.
[4] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, 7-e izd., ispr., Drofa, M., 2003, 840 pp. | MR