Numerical photomechanics: numerical processing of photoelasticity experiments and its application to the problems of fracture mechanics problems
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2013), pp. 63-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the basis of photoelasticity method the experimental study of near crack tip stressed strain state in specimens under mixed loading conditions is performed. Carried out experimental investigation allows to obtain coefficients of full asymptotic expansions of stress and displacement fields in the vicinity of the crack tip and alos to find coefficients of highest approach in Williams full asymptotic expansion.
Keywords: photoelsticity method, mixed loading, digital image processing, highest approaches in asymptotic expansions in the vicinity of the crack tip or angle notch.
@article{VSGU_2013_9_a8,
     author = {T. E. Gerasimova and P. N. Lomakov and L. V. Stepanova},
     title = {Numerical photomechanics: numerical processing of photoelasticity experiments and its application to the problems of fracture mechanics problems},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {63--73},
     year = {2013},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2013_9_a8/}
}
TY  - JOUR
AU  - T. E. Gerasimova
AU  - P. N. Lomakov
AU  - L. V. Stepanova
TI  - Numerical photomechanics: numerical processing of photoelasticity experiments and its application to the problems of fracture mechanics problems
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2013
SP  - 63
EP  - 73
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/VSGU_2013_9_a8/
LA  - ru
ID  - VSGU_2013_9_a8
ER  - 
%0 Journal Article
%A T. E. Gerasimova
%A P. N. Lomakov
%A L. V. Stepanova
%T Numerical photomechanics: numerical processing of photoelasticity experiments and its application to the problems of fracture mechanics problems
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2013
%P 63-73
%N 9
%U http://geodesic.mathdoc.fr/item/VSGU_2013_9_a8/
%G ru
%F VSGU_2013_9_a8
T. E. Gerasimova; P. N. Lomakov; L. V. Stepanova. Numerical photomechanics: numerical processing of photoelasticity experiments and its application to the problems of fracture mechanics problems. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2013), pp. 63-73. http://geodesic.mathdoc.fr/item/VSGU_2013_9_a8/

[1] Stepanova L. V., Matematicheskie metody mekhaniki razrusheniya, Fizmatlit, M., 2009, 336 pp.

[2] Albaut G. N., Nelineinaya fotouprugost v prilozhenii k zadacham mekhaniki razrusheniya, NGASU, Novosibirsk, 2002, 112 pp.

[3] Asundi A. K., Matlab for Photomechanics, Elsevier, Oxford, 2002, 199 pp.

[4] Razumovskii I. A., Interferentsionno-opticheskie metody mekhaniki deformiruemogo tverdogo tela, Izd-vo MGTU im. N. E. Baumana, M., 2007, 240 pp.

[5] Stepanova L. V., “O sobstvennykh znacheniyakh v zadache o treschine antiploskogo sdviga v materiale so stepennymi opredelyayuschimi uravneniyami”, Prikladnaya mekhanika i tekhnicheskaya fizika, 49:1 (2008), 173–180 | Zbl

[6] Stepanova L. V., “Analiz sobstvennykh znachenii v zadache o treschine v materiale so stepennym opredelyayuschim zakonom”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 2009, no. 8, 1332–1347 | MR | Zbl

[7] Stepanova L. V., Fedina M. E., “O geometrii oblasti polnostyu povrezhdennogo materiala u vershiny treschiny antiploskogo sdviga v svyazannoi postanovke (svyazka “polzuchest–povrezhdennost”)”, Vestnik Samarskogo gosudarstvennogo universiteta, 2001, no. 2, 87–113 | MR | Zbl

[8] Astafev V. A., Shesterikov S. A., Stepanova L. V., “Asimptotika napryazhenno-deformirovannogo sostoyaniya v okrestnosti vershiny treschiny v usloviyakh polzuchesti”, Vestnik Samarskogo gosudarstvennogo universiteta, 1995, Spets. vypusk, 59–64

[9] Hello G., Tahar M. B., Roelandt J. M., “Analytical determination of coefficients in crack-tip stress expansions for a finite crack in an infinite plane medium”, Int. J. of Solids and Structures, 49 (2012), 556–566 | DOI

[10] Stepanova L. V., Fedina M. E., “Avtomodelnoe reshenie zadachi o treschine antiploskogo sdviga v svyazannoi postanovke (svyazka “polzuchest–povrezhdennost”)”, Vestnik Samarskogo gosudarstvennogo universiteta, 2000, no. 4, 128–145 | Zbl

[11] Stepanova L. V., “Utochnennyi raschet napryazhenno-deformirovannogo sostoyaniya u vershiny treschiny v usloviyakh tsiklicheskogo nagruzheniya”, Vestnik Samarskogo gosudarstvennogo universiteta, 2011, no. 83, 105–115

[12] Stepanova L. V., “Eigenspectra and orders of stress singularity at a mode I crack tip fpr a power-law medium”, Comptes Rendus Mechanique, 336:1–2 (2008), 232–237 | DOI | Zbl

[13] Williams M. L., “On the stress distribution at the base of a stationary crack”, Trans. ASME. Journal of Applied Mechanics, 24 (1957), 109–114 | MR | Zbl

[14] Williams M. L., “Stress singularities resulting from various boundary conditions in angular corners of plates in tension”, Trans. ASME. Journal of Applied Mechanics, 19 (1952), 526–528

[15] Ayatollahi M. R., Nejati M., “Experimental evaluation of stress field around the sharp notches using photoelasticity”, Materials and Design, 2011, no. 32, 561–569 | DOI

[16] Ayatollahi M. R., Dehghany M., Nejati M., “Frature analysis of V-notched compnents — Effects of first non-singular stress term”, Int. J. of Solids and Structures, 48 (2011), 1579–1589 | DOI | Zbl