Plasticity condition connected with level lines of strain state surface for different deformation processes
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2013), pp. 43-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the basis of the theory of plastic flow the peculiarities of application of plasticity condition connected with level lines of strain state surface for work-hardening incompressible rigid-plastic body at different stressed states realized in the context of plane and axisymmetric strain, plane stressed state are considered. Comparison of the proposed condition with plasticity conditions of Mises and Tresca is carried out on the basis of construction of yield curves in deviatoric plane and in planes corresponding to certain stressed states. It is shown that the proposed plasticity condition describes plastic flow on the edge of Tresca prism in conditions of axisymmetric deformation.
Keywords: work-hardening incompressible rigid-plastic body, plasticity condition, plane strain, axisymmetric strain, plane stress.
@article{VSGU_2013_9_a6,
     author = {A. A. Bukhanko},
     title = {Plasticity condition connected with level lines of strain state surface for different deformation processes},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {43--54},
     year = {2013},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2013_9_a6/}
}
TY  - JOUR
AU  - A. A. Bukhanko
TI  - Plasticity condition connected with level lines of strain state surface for different deformation processes
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2013
SP  - 43
EP  - 54
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/VSGU_2013_9_a6/
LA  - ru
ID  - VSGU_2013_9_a6
ER  - 
%0 Journal Article
%A A. A. Bukhanko
%T Plasticity condition connected with level lines of strain state surface for different deformation processes
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2013
%P 43-54
%N 9
%U http://geodesic.mathdoc.fr/item/VSGU_2013_9_a6/
%G ru
%F VSGU_2013_9_a6
A. A. Bukhanko. Plasticity condition connected with level lines of strain state surface for different deformation processes. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2013), pp. 43-54. http://geodesic.mathdoc.fr/item/VSGU_2013_9_a6/

[1] Khill R., Matematicheskaya teoriya plastichnosti, Gostekhteoretizdat, M., 1956, 420 pp.

[2] Kachanov L. M., Osnovy teorii plastichnosti, Nauka, M., 1969, 407 pp.

[3] Bykovtsev G. I., Ivlev D. D., Teoriya plastichnosti, Dalnauka, Vladivostok, 1998, 528 pp.

[4] Pisarenko G. S., Lebedev A. A., Deformirovanie i prochnost materialov pri slozhnom napryazhennom sostoyanii, Naukova dumka, K., 1976, 415 pp. | MR | Zbl

[5] Goldenblat I. I., Kopnov V. A., Kriterii prochnosti i plastichnosti konstruktsionnykh materialov, Mashinostroenie, M., 1968, 192 pp.

[6] Geniev G. A., Kisyuk V. N., Tyupin G. A., Teoriya plastichnosti betona i zhelezobetona, Stroiizdat, M., 1974, 316 pp.

[7] Lomakin E. V., “Mekhanika sred s zavisyaschimi ot vida napryazhennogo sostoyaniya svoistvami”, Fizicheskaya mezomekhanika, 10:5 (2007), 41–52 | MR

[8] A. A. Bukhanko i dr., “Deformatsionno-energeticheskii kriterii razrusheniya zhestkoplasticheskikh tel”, Izv. RAN. MTT, 2009, no. 6, 178–186

[9] Bukhanko A. A., “Uslovie plastichnosti, svyazannoe s liniyami urovnya poverkhnosti deformatsionnykh sostoyanii, i osobennosti ego prilozheniya v teorii idealnoi plastichnosti”, Vestnik SamGTU. Ser.: Fiz.-mat. nauki, 2013, no. 1(30), 199–206 | DOI | MR

[10] Khromov A. I., Kocherov E. P., Grigoreva A. L., “Poverkhnost nagruzheniya, svyazannaya s liniyami urovnya poverkhnosti deformatsii neszhimaemogo zhestkoplasticheskogo tela”, Vestnik SamGTU. Ser.: Fiz.-mat. nauki, 2006, no. 43, 88–91 | DOI

[11] Khromov A. I., Kocherov E. P., Grigoreva A. L., “Deformatsionnye sostoyaniya i usloviya razrusheniya zhestkoplasticheskikh tel”, Doklady Akademii nauk, 413:4 (2007), 481–485 | MR | Zbl

[12] Khromov A. I., Kozlova O. V., Razrushenie zhestkoplasticheskikh tel. Konstanty razrusheniya, Dalnauka, Vladivostok, 2005, 159 pp.

[13] Nadai A., Plastichnost i razrushenie tverdykh tel, Izd-vo inostr. lit., M., 1954, 647 pp.

[14] Ivlev D. D., Mekhanika plasticheskikh sred, v 2 t., v. 1, Teoriya idealnoi plastichnosti, Fizmatlit, M., 2001, 448 pp. | Zbl

[15] Ishlinskii A. Yu., Ivlev D. D., Matematicheskaya teoriya plastichnosti, Fizmatlit, M., 2003, 704 pp.

[16] Pisarenko G. S., Yakovlev A. P., Matveev V. V., Spravochnik po soprotivleniyu materialov, Izd-vo Delta, K., 2008, 816 pp.