Operator method for the study of small oscillations in systems with aftereffect
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2013), pp. 37-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper proposes operator method for the study of effect of appearence of small oscillations in systems with aftereffect.The method leads to new sufficient features of Andronov–Hopf bifurkation and allows to obtain approximate formulas for emerging decisions. As an application, we consider the problem of bifurcation points of Hutchinson–Wright equation.
Mots-clés : bifurcation
Keywords: dynamic systems, time-delay systems, operator equations, functionalization of parameter, asymptotic formulae.
@article{VSGU_2013_9_a5,
     author = {M. G. Yumagulov and D. A. Yakshibaeva},
     title = {Operator method for the study of small oscillations in systems with aftereffect},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {37--42},
     year = {2013},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2013_9_a5/}
}
TY  - JOUR
AU  - M. G. Yumagulov
AU  - D. A. Yakshibaeva
TI  - Operator method for the study of small oscillations in systems with aftereffect
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2013
SP  - 37
EP  - 42
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/VSGU_2013_9_a5/
LA  - ru
ID  - VSGU_2013_9_a5
ER  - 
%0 Journal Article
%A M. G. Yumagulov
%A D. A. Yakshibaeva
%T Operator method for the study of small oscillations in systems with aftereffect
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2013
%P 37-42
%N 9
%U http://geodesic.mathdoc.fr/item/VSGU_2013_9_a5/
%G ru
%F VSGU_2013_9_a5
M. G. Yumagulov; D. A. Yakshibaeva. Operator method for the study of small oscillations in systems with aftereffect. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2013), pp. 37-42. http://geodesic.mathdoc.fr/item/VSGU_2013_9_a5/

[1] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972, 352 pp. | MR | Zbl

[2] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp. | MR

[3] Khessard B., Kazarinov N., Ven I., Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985, 280 pp. | MR

[4] Malinetskii G. G., Upravlenie riskom. Risk, ustoichivoe razvitie, sinergetika, Nauka, M., 2000, 282 pp.

[5] A. A. Vyshinskii i dr., “Operatornyi metod priblizhennogo issledovaniya pravilnoi bifurkatsii v mnogoparametricheskikh dinamicheskikh sistemakh”, Ufim. matem. zhurnal, 2:4 (2010), 3–26