Hopf bifurcation in three-dimensional SIRS-model with diffusion
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2013), pp. 19-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, modified 3D epidemiologic SIRS model with the so-called saturation incidence is considered. In the course of research the considered model was enlarged by means of adding spatial constituent and diffusion process. The aim of the work is to prove the existence of spatial heterogeneous periodic solutions in the system that takes place when bifurcation of periodic solutions happens not only along temporal but spatial variable and to simulate them numerically.
Keywords: epidemiology, SIRS-model, saturation incidence, Hopf bifurcation
Mots-clés : diffusion.
@article{VSGU_2013_9_a2,
     author = {P. M. Kravets},
     title = {Hopf bifurcation in three-dimensional {SIRS-model} with diffusion},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {19--24},
     year = {2013},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2013_9_a2/}
}
TY  - JOUR
AU  - P. M. Kravets
TI  - Hopf bifurcation in three-dimensional SIRS-model with diffusion
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2013
SP  - 19
EP  - 24
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/VSGU_2013_9_a2/
LA  - ru
ID  - VSGU_2013_9_a2
ER  - 
%0 Journal Article
%A P. M. Kravets
%T Hopf bifurcation in three-dimensional SIRS-model with diffusion
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2013
%P 19-24
%N 9
%U http://geodesic.mathdoc.fr/item/VSGU_2013_9_a2/
%G ru
%F VSGU_2013_9_a2
P. M. Kravets. Hopf bifurcation in three-dimensional SIRS-model with diffusion. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2013), pp. 19-24. http://geodesic.mathdoc.fr/item/VSGU_2013_9_a2/

[1] May Robert M. et al., “Population biology of infectious diseases, I”, Nature, 280:5721 (1979), 361 | DOI

[2] May Robert M. et al., “Population biology of infectious diseases, II”, Nature, 280:5722 (1979), 455 | DOI

[3] Mena-Lorcat Jaime, Hethcote Herbert W., “Dynamic models of infectious diseases as regulators of population sizes”, Journal of Mathematical Biology, 30:7 (1992), 693–716 | DOI | MR

[4] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980, 368 pp. | MR | Zbl