Multi-scale stress-deformation status of porous geological structure as related to well filtration flows
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2013), pp. 153-169 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Mono-harmonic junction in the interaction of porous space rock stress in oil/gas saturated reservoirs and averaged hydro-dynamic flows of viscous oil towards wells obtained as a result of innovative decisions in oil industry in general is presented. Within the frames of block homogeneous models of a well through the application of 3D linear theory of wave diffusion along the surface of geophysical emission layer, mathematical statement of asymmetrical filtration challenge with finite velocity of effect is presented. Dispersive ratios for constrained and resonant dissipative structures in a shear layer of viscous-elastic filtration at the edge of a slug of water-oil displacement are given. The redistribution results for the averaged inflow profile of viscous Newtonian filtration into asymmetrical energy-stable stress-deformation status inside the saturated porous media at various constraints: in conditions of enclosed or capillary-clamped boundary and in non-constrained conditions — at the frontier of displacement or with stimulation of water-flood displacement in zones of stagnation is presented.
Keywords: system analysis, geophysical studies, seismic emission, rock stress, petrophysics, geomonitoring, Navier–Stokes equations, hydrodynamics, longitudinal, non-linear effect, dislocation, viscous elasticity, relaxation, finite velocity.
Mots-clés : geo-information, filtration, transverse waves, diffusion
@article{VSGU_2013_9_a18,
     author = {V. I. Astafiev and M. G. Kakhidze and V. I. Popkov and A. V. Popkova},
     title = {Multi-scale stress-deformation status of porous geological structure as related to well filtration flows},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {153--169},
     year = {2013},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2013_9_a18/}
}
TY  - JOUR
AU  - V. I. Astafiev
AU  - M. G. Kakhidze
AU  - V. I. Popkov
AU  - A. V. Popkova
TI  - Multi-scale stress-deformation status of porous geological structure as related to well filtration flows
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2013
SP  - 153
EP  - 169
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/VSGU_2013_9_a18/
LA  - ru
ID  - VSGU_2013_9_a18
ER  - 
%0 Journal Article
%A V. I. Astafiev
%A M. G. Kakhidze
%A V. I. Popkov
%A A. V. Popkova
%T Multi-scale stress-deformation status of porous geological structure as related to well filtration flows
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2013
%P 153-169
%N 9
%U http://geodesic.mathdoc.fr/item/VSGU_2013_9_a18/
%G ru
%F VSGU_2013_9_a18
V. I. Astafiev; M. G. Kakhidze; V. I. Popkov; A. V. Popkova. Multi-scale stress-deformation status of porous geological structure as related to well filtration flows. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2013), pp. 153-169. http://geodesic.mathdoc.fr/item/VSGU_2013_9_a18/

[1] Astafev V. I., Fedorchenko G. D., “Modelirovanie filtratsii zhidkosti pri nalichii treschiny gidravlicheskogo razryva plasta”, Vestnik SamGTU. Ser.: Fiz.-mat. nauki, 2007, no. 2(15), 128–132 | DOI

[2] Vainberg A. M., Matematicheskoe modelirovanie protsessov perenosa. Reshenie nelineinykh kraevykh zadach, Ierusalim, M., 2009, 209 pp.

[3] Mikhailov N. N., “Novye napravleniya povysheniya informativnosti geologo-gidrodinamicheskogo modelirovaniya zalezhi”, Neftyanoe khozyaistvo, 2013, no. 3, 69–73

[4] Verveiko N. D., Shashkina S. A., “Vliyanie mikrostruktury uprugogo materiala na ego deformirovanie”, Vestnik SamGU, 2009, no. 4(70), 101–113

[5] Vasilev V. V., Mekhanika konstruktsii iz kompozitsionnykh materialov, Mashinostroenie, M., 1988, 272 pp.

[6] Popkov V. I., Popkova A. V., “Geogidrodinamicheskoe sopryazhennoe vzaimodeistvie gornykh napryazhenii s vyazkim stokom skvazhiny”, Aktualnye problemy matematiki i mekhaniki, Materialy Vseros. nauch. konf., posvyasch. 75-letiyu G. I. Bykovtseva (Samara, 2013), 117–118

[7] Voropaev G. A., Popkov V. I., “Propagation of axisymmetric waves in a hollow viscoelastic cylinder”, International Applied Mechanics, 25:10 (1989), 973–976 | Zbl

[8] Popkov V., Shakshin V., Voropaev G., Blochnaya samoorganizatsiya deflyuidizatsii Zemli. Klasternaya struktura prostanstva vremeni, Palmarium Academic Publishing, Saarbrucken, Germany, 2012, 410 pp.

[9] Timurziev A. I., Noveishaya sdvigovaya tektonika osadochnykh basseinov: tektonofizicheskii i flyuidodinamicheskii aspekty (v svyazi s neftegazonosnostyu), dis. \ldots d-ra geol.-min. nauk, M., 2009

[10] Melnik I. A., “Metodika vyyavleniya perspektivnykh neftegazonasyschennykh uchastkov v tektonicheski napryazhennykh zonakh”, Neftyanoe khozyaistvo, 2013, no. 3, 23–27

[11] Mindlin R. D., “Force at a Point in the Interior of a Semi-Infinite Solid”, Journal of Applied Physics, 7 (1936), 195–202 | Zbl

[12] Wong R. C. K., Chau K. T., “Casing Impairment Induced by Shear Slip Along a Weak Layer in Shale Due to Fluid (Steam) Injection”, Journal of Canadian Petroleum Technology, 45:12 (2006), 60–66

[13] Kulesh M. A., Shardakov I. N., “Parametric analysis of analytical solutions to one- and two-dimensional problems in couple-stress theory of elasticity”, Z. Angew. Math. Mech., 83:4 (2003), 238–248 | DOI | MR | Zbl

[14] Nikolaevskii V. N., Geomekhanika i flyuidodinamika, Nedra, M., 1996, 447 pp.

[15] Vanag V. K., Dissipativnye struktury v reaktsionno-diffuzionnykh sistemakh, Institut kompyuternykh issledovanii. NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2008, 300 pp.