HIV evolution model
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2013), pp. 147-152
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper the results of numerical simulations for Korobeinikov’s model of HIV evolution are presented. Based on Tikhonov–Vasilieva method of boundary function the first approximation of the system solutions is realized.
Mots-clés :
singular perturbations
Keywords: asymptotic expansion, boundary layer.
Keywords: asymptotic expansion, boundary layer.
@article{VSGU_2013_9_a17,
author = {A. A. Archibasov},
title = {HIV evolution model},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {147--152},
year = {2013},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2013_9_a17/}
}
A. A. Archibasov. HIV evolution model. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2013), pp. 147-152. http://geodesic.mathdoc.fr/item/VSGU_2013_9_a17/
[1] Murray J. D., Mathematical Biology, v. 1, An introduction, Third Edition, Springer, 2002, 576 pp. | MR
[2] Korobeinikov A., Dempsey C., A continuos strain-space model of viral evolution within a host, CRM Preprint, 2012, 13 pp.
[3] Sardanyes Josep, Santiago F. Elena, “Quasispecies Spatial Models for RNA Viruses with Different Replication Modes and Infection Strategies”, PloS ONE, 6:9, September (2011), e24884 http://www.plosone.org | DOI
[4] Bratus A. S., Novozhilov A. S., Platonov A. P., Dinamicheskie sistemy i modeli biologii, Fizmatlit, M., 2010, 400 pp.
[5] Vasilieva A. B., Butuzov V. F., Kalachev L. V., The boundary function method for singular perturbation problems, St. in Applied Mathematics, 14, SIAM, Philadelphia, 1995 | MR