Review of incremental and direct methods of determining asymptotic stabilized behaviour of inelastic structures
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2013), pp. 118-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The review of methods that can be used to define the asymptotic stabilized state of an inelastic structure under cyclic loading is given in the paper. Due to the growth of interest for the knowledge of the asymptotic behaviour of the structure under cyclic loading, incremental (with the use of finite element method) and direct methods (methods of optimal control theory and decomposition of residual stresses in Fourier series) began to develop.
Keywords: cyclic loading, asymptotic behaviour of a structure, direct methods, optimal control theory, shakedown, cyclic plasticity, ratchetting, finite element method.
@article{VSGU_2013_9_a14,
     author = {V. A. Turkova},
     title = {Review of incremental and direct methods of determining asymptotic stabilized behaviour of inelastic structures},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {118--132},
     year = {2013},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2013_9_a14/}
}
TY  - JOUR
AU  - V. A. Turkova
TI  - Review of incremental and direct methods of determining asymptotic stabilized behaviour of inelastic structures
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2013
SP  - 118
EP  - 132
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/VSGU_2013_9_a14/
LA  - ru
ID  - VSGU_2013_9_a14
ER  - 
%0 Journal Article
%A V. A. Turkova
%T Review of incremental and direct methods of determining asymptotic stabilized behaviour of inelastic structures
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2013
%P 118-132
%N 9
%U http://geodesic.mathdoc.fr/item/VSGU_2013_9_a14/
%G ru
%F VSGU_2013_9_a14
V. A. Turkova. Review of incremental and direct methods of determining asymptotic stabilized behaviour of inelastic structures. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2013), pp. 118-132. http://geodesic.mathdoc.fr/item/VSGU_2013_9_a14/

[1] Peigney M., Stolz C., “An optimal control approach to the analysis of inelastic structures under cyclic loading”, J. of Mechanics and Physics of Solids, 51 (2003), 575–605 | DOI | MR | Zbl

[2] Kachanov L. M., Osnovy teorii plastichnosti, Nauka, M., 1969, 420 pp.

[3] Spiliopoulos K. V., Panagiotou K. D., “A direct method to predict cyclic steady state of elastoplastic structures”, Comput. Methods Appl. Mech. Engrg., 223–224 (2012), 186–198 | DOI | MR | Zbl

[4] Rebelo N., “Finite Element Analysis on the Cyclic Properties of Superelastic Nitinol”, Abaqus User's Conference (May, 2004, Boston, USA)

[5] A. A. Adamov i dr., Metody prikladnoi vyazkouprugosti, UrO RAN, Perm, 2003, 412 pp.

[6] Bree J., “Elastic-plastic behaviour of thin tubes subjected to internal pressures and intermittent high-heat fluxes with application to fast-nuclear-reactor fuel elements”, J. Strain Anal., 2 (1967), 226–238 | DOI

[7] Peigney M., Approche par controle optimal des structure anelastiques sous chargement cyclique, These de docteur de l'ecole polytechnique, 2003

[8] Du Z., Wang J., Fan X., “Direct cyclic method for solder joint reliability analysis”, Proceedings of IMECE 2006: ASME International Mechanical Engineering Congress and Exposition (November 5–10, 2006, Chicago, USA)

[9] Koiter W. T., “General theorems for elastic-plastic solids”, Prog. Solids mechanics, 1 (1960), 165–221 | MR

[10] “Low-cycle Thermal Fatigue of a Surface-mount Electronics Assembly”, Simulia. Abaqus Technology Brief, 2009 http://www.3ds.com

[11] Nguyen-Tajan T. M. L., “Determination of the stabilized response of a structure undergoing cyclic thermal-mechanical loads by a direct cyclic method”, Abaqus User's Conference (May, 2003, Munich, Germany)

[12] Chen H., Ponter A. R. S., “A method for the evaluation of a ratchet limit and the amplitude of plastic strain for bodies subjected to cyclic loading”, Eur. J. Mech. A. Solids, 20 (2001), 555–571 | DOI | MR | Zbl

[13] Ponter A. R. S., Chen H., “A minimum theorem for cyclic load in excess of shakedown, with application to the evaluation of a ratchet limit”, Eur. J. Mech. A. Solids, 20 (2001), 539–553 | DOI | MR | Zbl

[14] L. S. Pontryagin i dr., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983, 392 pp. | MR | Zbl

[15] Byui Kh. D., Mekhanika razrusheniya: obratnye zadachi i resheniya, Fizmatlit, M., 2011, 409 pp.

[16] Astafev V. I., Shesterikov S. A., Stepanova L. V., “Asimptotika napryazhenno-deformirovannogo sostoyaniya v okrestnosti vershiny treschiny v usloviyakh polzuchesti”, Vestnik SamGU, 1995, Spetsialnyi vypusk, 59–64

[17] Stepanova L. V., “Utochnennyi raschet napryazhenno-deformirovannogo sostoyaniya u vershiny treschiny v usloviyakh tsiklicheskogo nagruzheniya v srede s povrezhdennostyu”, Vestnik SamGU, 2011, no. 2(83), 105–115