Mots-clés : decomposition
@article{VSGU_2013_9_a0,
author = {N. V. Voropaeva},
title = {Decomposition of multirate dynamic systems with small dissipation},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {5--10},
year = {2013},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2013_9_a0/}
}
N. V. Voropaeva. Decomposition of multirate dynamic systems with small dissipation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2013), pp. 5-10. http://geodesic.mathdoc.fr/item/VSGU_2013_9_a0/
[1] Sobolev V. A., “Integral manifolds and decomposition of singularly perturbed systems”, Syst. Control Lett., 5 (1984), 169–279 | DOI | MR
[2] Strygin V. V., Sobolev V. A., Razdelenie dvizhenii metodom integralnykh mnogoobrazii, Nauka, M., 1988 | MR | Zbl
[3] Voropaeva N. V., Sobolev V. A., Geometricheskaya dekompozitsiya singulyarno vozmuschennykh sistem, Fizmatlit, M., 2009 | Zbl
[4] Spong M. W., “Modeling and control of elastic joint robots”, Journal of Dynamic Systems, Measurement, and Control, 109 (1987), 310–319 | DOI | Zbl
[5] Spong M. W., Khorasani K., Kokotovic P. V., “An integral manifold approach to feedback control of flexible joint robots”, IEEE Journal of Robotics and Automation, 3:4 (1987), 291–301 | DOI | MR
[6] M. P. Mortell et al., Singular Perturbation and Hysteresis, SIAM, Philadelphia, 2005, 344 pp. | MR | Zbl