Invariant integrals in equilibrium problem for a Timoshenko type plate with the Signorini type condition on the crack
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2013), pp. 100-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The equilibrium problem for the elastic Timoshenko type plate with a crack is considered. On the crack faces, the non-penetration conditions of inequality type (Signorini type conditions) are given. It is proved that there exist invariant integrals that are equal to the derivative of the energy functional with respect to perturbation parameter.
Keywords: crack, Timoshenko-type plate, variational problem, non-penetration condition.
@article{VSGU_2013_6_a9,
     author = {N. P. Lazarev},
     title = {Invariant integrals in equilibrium problem for a {Timoshenko} type plate with the {Signorini} type condition on the crack},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {100--115},
     year = {2013},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2013_6_a9/}
}
TY  - JOUR
AU  - N. P. Lazarev
TI  - Invariant integrals in equilibrium problem for a Timoshenko type plate with the Signorini type condition on the crack
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2013
SP  - 100
EP  - 115
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2013_6_a9/
LA  - ru
ID  - VSGU_2013_6_a9
ER  - 
%0 Journal Article
%A N. P. Lazarev
%T Invariant integrals in equilibrium problem for a Timoshenko type plate with the Signorini type condition on the crack
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2013
%P 100-115
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2013_6_a9/
%G ru
%F VSGU_2013_6_a9
N. P. Lazarev. Invariant integrals in equilibrium problem for a Timoshenko type plate with the Signorini type condition on the crack. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2013), pp. 100-115. http://geodesic.mathdoc.fr/item/VSGU_2013_6_a9/

[1] Cherepanov G. P., Mekhanika khrupkogo razrusheniya, Nauka, M., 1974, 640 pp. | Zbl

[2] Cherepanov G. P., Mekhanika razrusheniya gornykh porod v protsesse bureniya, Nedra, M., 1987, 308 pp.

[3] Astafev V. I., Radaev Yu. N., Stepanova L. V., Nelineinaya mekhanika razrusheniya, Izd-vo “Samarskii universitet”, Samara, 2001, 562 pp.

[4] Parton V. Z., Morozov E. M., Mekhanika uprugo-plasticheskogo razrusheniya, Nauka, M., 1985, 505 pp.

[5] Knowles J. K., Sternberg E., “On a class of conservation laws in linearized and finite elastostatics”, Archive for rational mechanics and analysis, 44:3 (1972), 187–211 | DOI | MR | Zbl

[6] Sosa H., Herrmann G., “On invariant integrals in analysis of cracked plates”, International Journal of Fracture, 40 (1989), 111–126 | DOI | MR

[7] Naganarayana B. P., Atluri S. N., “Energy-release-rate evaluation for delamination growth prediction in multi-plate model of a laminate composite”, Computational Mechanics, 15:5 (1995), 443–459 | DOI | Zbl

[8] Mikhailov B. K., Plastiny i obolochki s razryvnymi parametrami, Izd-vo Leningr. un-ta, L., 1980, 196 pp.

[9] Lazarev N. P., “Differentsirovanie funktsionala energii v zadache o ravnovesii plastiny Timoshenko, soderzhaschei treschinu”, PMiTF, 53:2 (2012), 175–185 | MR

[10] Khludnev A. M., Kovtunenko V. A., Analysis of cracks in solids, WIT Press, Southampton–Boston, 2000, 408 pp.

[11] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010, 252 pp.

[12] Kovtunenko V. A., “Invariantnye integraly energii dlya nelineinoi zadachi o treschine s vozmozhnym kontaktom beregov”, Prikl. matematika i mekhanika, 67:1 (2003), 109–123 | MR | Zbl

[13] Khludnev A. M., Andersson L.-E., “Treschina, vykhodyaschaya na kontaktnuyu granitsu. Metod fiktivnykh oblastei i invariantnye integraly”, Sib. zhurn. industr. matem., 11:3 (2008), 15–29 | MR

[14] Rudoi E. M., “Invariantnye integraly v ploskoi zadache teorii uprugosti dlya tel s zhestkimi vklyucheniyami i treschinami”, Sib. zhurn. industr. matem., 15:1 (2012), 99–109 | MR | Zbl

[15] Rudoi E. M., “Invariantnye integraly dlya zadachi ravnovesiya plastiny s treschinoi”, Sib. matem. zhurn., 45:2 (2004), 466–477 | MR | Zbl

[16] Lazarev N. P., “Iteratsionnyi metod shtrafa dlya nelineinoi zadachi o ravnovesii plastiny Timoshenko, soderzhaschei treschinu”, Sib. zhurn. vychisl. matem., 14:4 (2011), 381–392 | Zbl

[17] Lazarev N. P., “Zadacha o ravnovesii plastiny Timoshenko, soderzhaschei skvoznuyu treschinu”, Sib. zhurn. industr. matem., 14:4 (2011), 32–43 | Zbl

[18] Pelekh B. L., Teoriya obolochek s konechnoi sdvigovoi zhestkostyu, Nauk. dumka, Kiev, 1973, 248 pp. | Zbl

[19] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Nauka, M., 1974, 160 pp.