Invariant integrals in equilibrium problem for a Timoshenko type plate with the Signorini type condition on the crack
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2013), pp. 100-115

Voir la notice de l'article provenant de la source Math-Net.Ru

The equilibrium problem for the elastic Timoshenko type plate with a crack is considered. On the crack faces, the non-penetration conditions of inequality type (Signorini type conditions) are given. It is proved that there exist invariant integrals that are equal to the derivative of the energy functional with respect to perturbation parameter.
Keywords: crack, Timoshenko-type plate, variational problem, non-penetration condition.
@article{VSGU_2013_6_a9,
     author = {N. P. Lazarev},
     title = {Invariant integrals in equilibrium problem for a {Timoshenko} type plate with the {Signorini} type condition on the crack},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {100--115},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2013_6_a9/}
}
TY  - JOUR
AU  - N. P. Lazarev
TI  - Invariant integrals in equilibrium problem for a Timoshenko type plate with the Signorini type condition on the crack
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2013
SP  - 100
EP  - 115
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2013_6_a9/
LA  - ru
ID  - VSGU_2013_6_a9
ER  - 
%0 Journal Article
%A N. P. Lazarev
%T Invariant integrals in equilibrium problem for a Timoshenko type plate with the Signorini type condition on the crack
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2013
%P 100-115
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2013_6_a9/
%G ru
%F VSGU_2013_6_a9
N. P. Lazarev. Invariant integrals in equilibrium problem for a Timoshenko type plate with the Signorini type condition on the crack. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2013), pp. 100-115. http://geodesic.mathdoc.fr/item/VSGU_2013_6_a9/