Numerical method of construction of eigen value spectrum of a non linear problem arising from one problem of mixed deformation of plate with crack
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2013), pp. 85-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work a method of numerical finding of eigen values of class of non linear problems on eigen values arising from the problem of defining stressedly-deformed state near the apex of crack in the materials with exponential determining equations in conditions of compound deforming in full range of mixed forms of deformation from normal fracture up to simple shear is suggested. With the help of suggested approach new eigen values of the problem, different from the known eigen value, that corresponds to the classical solution of Hutchison–Rice–Rosengren are obtained.
Keywords: stressedly-deformed state near the apex of crack, exponential defining law, mixed deformation, non linear eigen value problem.
Mots-clés : decomposition technique on eigen functions
@article{VSGU_2013_6_a8,
     author = {E. M. Adylina},
     title = {Numerical method of construction of eigen value spectrum of a non linear problem arising from one problem of mixed deformation of plate with crack},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {85--99},
     year = {2013},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2013_6_a8/}
}
TY  - JOUR
AU  - E. M. Adylina
TI  - Numerical method of construction of eigen value spectrum of a non linear problem arising from one problem of mixed deformation of plate with crack
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2013
SP  - 85
EP  - 99
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2013_6_a8/
LA  - ru
ID  - VSGU_2013_6_a8
ER  - 
%0 Journal Article
%A E. M. Adylina
%T Numerical method of construction of eigen value spectrum of a non linear problem arising from one problem of mixed deformation of plate with crack
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2013
%P 85-99
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2013_6_a8/
%G ru
%F VSGU_2013_6_a8
E. M. Adylina. Numerical method of construction of eigen value spectrum of a non linear problem arising from one problem of mixed deformation of plate with crack. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2013), pp. 85-99. http://geodesic.mathdoc.fr/item/VSGU_2013_6_a8/

[1] Shlyannikov V. N., Kislova S. Yu., “Parametry smeshannykh form deformirovaniya dlya treschiny v vide matematicheskogo razreza”, Izvestiya Saratovskogo universiteta. Ser.: Matematika. Mekhanika. Informatika, 9:1 (2009), 77–84 | MR

[2] Shlyannikov V. N., Tumanov A. V., “Uprugie parametry smeshannykh form deformirovaniya poluellipticheskoi treschiny pri dvukhosnom nagruzhenii”, Izvestiya Saratovskogo universiteta. Ser.: Matematika. Mekhanika. Informatika, 10:2 (2010), 73–80

[3] Stepanova L. V., Elekina T. B., “Smeshannoe nagruzhenie (normalnyi otryv i poperechnyi sdvig) elementa konstruktsii s treschinoi v materiale s drobno-lineinym zakonom polzuchesti”, Vestnik SamGU, 2009, no. 2(68), 123–139 | MR

[4] Pestrikov V. M., Morozov E. M., Mekhanika razrusheniya, Professiya, SPb., 2012

[5] Byui Kh. D., Mekhanika razrusheniya: Obratnye zadachi i resheniya, Fizmatlit, M., 2011, 412 pp.

[6] Hello G., Tahar M. B., Roelandt J. M., “Analytical determination of coefficients in crack-tip stress expansions for a finite crack in an infinite plane medium”, Int. J. of Solids and Structures, 49 (2012), 556–566 | DOI

[7] Pan J., Lin P. C., “Analytical solutions for crack-tip sectors in perfectly plastic Mises materials under mixed in-plane and out-of-plane shear loading conditions”, Engng. Fracture Mechanics, 73 (2006), 1797–1813 | DOI

[8] Rahman M., Hancock J. W., “Elastic perfectly-plastic asymptotic mixed mode crack tip fields in plane stress”, Int. J. Solids and Structures, 43 (2006), 3692–3704 | DOI | Zbl

[9] Shih C. F., Elastic-plastic analysis of combined mode crack problems, Ph. D. Thesis, Harvard University, Cambridge, M.A., 1973

[10] Shih C. F., “Small scale yielding analysis of mixed mode plane-strain crack problems”, Fracture Analysis ASTM STP, 560 (1974), 187–210

[11] Shlyannikov V. N., Elastic-Plastic Mixed-Mode Fracture Criteria and Parameters, Springer, Berlin, 2003 | Zbl

[12] Stepanova L. V., “O sobstvennykh znacheniyakh v zadache o treschine antiploskogo sdviga v materiale so stepennymi opredelyayuschimi uravneniyami”, Zhurnal prikl. mekhaniki i tekhn. fiziki, 49:1 (2008), 173–180 | MR | Zbl

[13] Stepanova L. V., “Analiz sobstvennykh znachenii v zadache o treschine v materiale so stepennym opredelyayuschim zakonom”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 2009, no. 8, 1332–1347

[14] Adylina E. M., Stepanova L. V., “O postroenii mnogomasshtabnykh modelei neuprugogo razrusheniya”, Vestnik SamGU. Estestvennonauchnaya seriya, 2012, no. 9(100), 70–83

[15] Rice J. R., “Mathematical analysis in mechanics of fracture”, Fracture, v. 2, ed. H. Liebowitz, Academic Press, New York, 1968, 191–311

[16] Si Dzh., “Mezomekhanika, ponyatie segmentatsii i multiskeilingovyi podkhod: nano-mikro-makro”, Fizicheskaya mezomekhanika, 11:3 (2008), 5–18

[17] Elsukova T. F., Panin V. E., Vaulina O. Yu., “Masshtabno-strukturnye urovni znakoperemennoi intensivnoi plasticheskoi deformatsii i ustalostnogo razrusheniya polikristallov”, Tezisy dokladov Mezhdunarodnoi konferentsii po fizicheskoi mezomekhanike, kompyuternomu konstruirovaniyu i razrabotke novykh materialov (7–11 sentyabrya 2009 g., Tomsk, Rossiya), IFPM SO RAN, Tomsk, 2009, 64–65

[18] Astafev V. I., Stepanova L. V., “Asimptotika dalnego polya napryazhenii v zadache o roste treschiny v usloviyakh polzuchesti v srede s povrezhdennostyu”, Izv. RAN. Ser.: Mekhanika tverdogo tela, 2005, no. 2, 145–154

[19] Stepanova L. V., Fedina M. E., “Avtomodelnoe reshenie zadachi o treschine otryva v svyazannoi postanovke”, Prikladnaya matematika i mekhanika, 72:3 (2008), 516–527 | Zbl

[20] Hutchinson J. W., “Singular behaviour at the end of tensile crack in a hardening material”, J. Mech. Phys. Solids, 16:1 (1968), 13–31 | DOI | Zbl

[21] Rice J. R., Rosengren G. F., “Plane strain deformation near a crack tip in a power-law hardening material”, J. Mech. Phys. Solids, 16:1 (1968), 1–12 | DOI | Zbl

[22] Hutchinson J. W., “Plastic stress and strain fields at a crack tip”, J. Mech. Phys. Solids, 16:5 (1968), 337–347 | DOI

[23] Adylina E. M., Igonin S. A., Stepanova L. V., “O nelineinoi zadache na sobstvennye znacheniya, sleduyuschei iz analiza napryazhenii u vershiny ustalostnoi treschiny”, Vestnik Samarskogo gosudarstvennogo universiteta, 2012, no. 3/1(94), 83–102

[24] Stepanova L. V., Fedina M. E., “Asimptotika dalnego polya napryazhenii v zadache o roste treschiny v usloviyakh polzuchesti v srede s povrezhdennostyu”, Prikladnaya mekhanika i tekhnicheskaya fizika, 2005, no. 4, 133–145

[25] Barenblatt G. I., Avtomodelnye yavleniya — analiz razmernostei i skeiling, Izdatelskii dom “Intellekt”, Dolgoprudnyi, 2009

[26] Elsukova T. F., Popkova Yu. F., Vaulina O. Yu., “Issledovanie mekhanizmov plasticheskoi deformatsii na mezourovne v vershine ustalostnoi treschiny pri znakoperemennom izgibe”, Tezisy dokladov Mezhdunarodnoi konferentsii po fizicheskoi mezomekhanike, kompyuternomu konstruirovaniyu i razrabotke novykh materialov (7–11 sentyabrya 2009 g., Tomsk, Rossiya), IFPM SO RAN, Tomsk, 2009, 65–66