Dirichlet problem for loaded degenerating equation of the mixed type in the rectangular area
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2013), pp. 40-53

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions of the uniqueness of solution of the first boundary problem for the loaded degenerating equtation of Lavrentiev–Bitsadze in rectangular area are established in this work.The solution of the task is constructed in the form of the number sum on the eigen functions of a corresponding one-dimensional problem on the eigen values. The solution stability from boundary functions is showed.
Keywords: loaded degenerating equation of the mixed type, problem of Dirihle, spectral method, uniqueness, stability.
Mots-clés : existence
@article{VSGU_2013_6_a4,
     author = {E. P. Melisheva},
     title = {Dirichlet problem for loaded degenerating equation of the mixed type in the rectangular area},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {40--53},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2013_6_a4/}
}
TY  - JOUR
AU  - E. P. Melisheva
TI  - Dirichlet problem for loaded degenerating equation of the mixed type in the rectangular area
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2013
SP  - 40
EP  - 53
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2013_6_a4/
LA  - ru
ID  - VSGU_2013_6_a4
ER  - 
%0 Journal Article
%A E. P. Melisheva
%T Dirichlet problem for loaded degenerating equation of the mixed type in the rectangular area
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2013
%P 40-53
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2013_6_a4/
%G ru
%F VSGU_2013_6_a4
E. P. Melisheva. Dirichlet problem for loaded degenerating equation of the mixed type in the rectangular area. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2013), pp. 40-53. http://geodesic.mathdoc.fr/item/VSGU_2013_6_a4/