Numerical method for the solution of inverse problems generated by perturbations of self-adjoint operators by method of regularized traces
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2013), pp. 23-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article a new method for the solution of inverse problems generated by perturbations of self-adjoint operators on their spectral characteristics is developed. The method was tested on inverse problems for Sturm–Liouville problems. The results of numerous calculations showed the computational efficiency of the method.
Keywords: inverse spectral problem, perturbation theory, self-adjoint operators, eigen values, eigen functions, incorrectly formulated problems.
@article{VSGU_2013_6_a2,
     author = {S. I. Kadchenko},
     title = {Numerical method for the solution of inverse problems generated by perturbations of self-adjoint operators by method of regularized traces},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {23--30},
     year = {2013},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2013_6_a2/}
}
TY  - JOUR
AU  - S. I. Kadchenko
TI  - Numerical method for the solution of inverse problems generated by perturbations of self-adjoint operators by method of regularized traces
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2013
SP  - 23
EP  - 30
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2013_6_a2/
LA  - ru
ID  - VSGU_2013_6_a2
ER  - 
%0 Journal Article
%A S. I. Kadchenko
%T Numerical method for the solution of inverse problems generated by perturbations of self-adjoint operators by method of regularized traces
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2013
%P 23-30
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2013_6_a2/
%G ru
%F VSGU_2013_6_a2
S. I. Kadchenko. Numerical method for the solution of inverse problems generated by perturbations of self-adjoint operators by method of regularized traces. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2013), pp. 23-30. http://geodesic.mathdoc.fr/item/VSGU_2013_6_a2/

[1] V. V. Dubrovskii i dr., “Novyi metod priblizhennogo vychisleniya pervykh sobstvennykh chisel spektralnoi zadachi gidrodinamicheskoi ustoichivosti techeniya Puazeilya v krugloi trube”, DAN Rossii, 380:2 (2001), 160–163 | MR | Zbl

[2] V. V. Dubrovskii i dr., “Novyi metod priblizhennogo vychisleniya pervykh sobstvennykh chisel spektralnoi zadachi Orra–Zomerfelda”, DAN Rossii, 378:4 (2001), 443–446 | MR | Zbl

[3] V. A. Sadovnichii i dr., “Vychislenie pervykh sobstvennykh znachenii zadachi gidrodinamicheskoi ustoichivosti techeniya vyazkoi zhidkosti mezhdu dvumya vraschayuschimisya tsilindrami”, Differents. uravneniya, 36:6 (2000), 742–746 | MR | Zbl

[4] Kadchenko S. I., “Vychislenie summ ryadov Releya–Shredingera vozmuschennykh samosopryazhennykh operatorov”, Zhurn. vychisl. matematiki i mat. fiziki, 47:9 (2007), 1494–1505 | MR

[5] Kadchenko S. I., “Metod regulyarizovannykh sledov”, Vestnik Yuzh-Ural. gos. un-ta. Ser.: Matematicheskoe modelirovanie i programmirovanie, 2009, no. 37(170), Vyp. 4, 4–23

[6] Kadchenko S. I., Ryazanova L. S., “Chislennyi metod nakhozhdeniya sobstvennykh znachenii diskretnykh poluogranichennykh snizu operatorov”, Vestnik Yuzh-Ural. gos. un-ta. Ser.: Matematicheskoe modelirovanie i programmirovanie, 2011, no. 17(234), Vyp. 8, 46–51

[7] Demidovich B. P., Maron I. A., Osnovy vychislitelnoi matematiki, Nauka, M., 1966, 659 pp. | MR | Zbl

[8] Sadovnichii V. A., Teoriya operatorov, ucheb. dlya vuzov, 3-e izd., ster., Vyssh. shk., M., 1999, 368 pp.

[9] Tikhanov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, DAN SSSR, 39:5 (1943), 501–505

[10] Verlan A. F., Sizikov B. C., Integralnye uravneniya: metody, algoritmy, programmy, Naukova dumka, Kiev, 1986, 542 pp. | MR