The structure of modular form: the phenomen of the section
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2013), pp. 5-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article we study the structure of spaces of modular forms $S_k(\Gamma_0(N),\chi)$ and $M_k(\Gamma_0(N),\chi)$ for the levels $N$ such that for a value $k_0~$ $S_{k_0}(\Gamma_0(N),\chi)$ is a one-dimensional space generated by a multiplicative $\eta$-product.
Keywords: spaces of modular forms, Dedekind eta-function
Mots-clés : parabolic vertex.
@article{VSGU_2013_6_a0,
     author = {G. V. Voskresenskaya},
     title = {The structure of modular form: the phenomen of the section},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {5--12},
     year = {2013},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2013_6_a0/}
}
TY  - JOUR
AU  - G. V. Voskresenskaya
TI  - The structure of modular form: the phenomen of the section
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2013
SP  - 5
EP  - 12
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2013_6_a0/
LA  - ru
ID  - VSGU_2013_6_a0
ER  - 
%0 Journal Article
%A G. V. Voskresenskaya
%T The structure of modular form: the phenomen of the section
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2013
%P 5-12
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2013_6_a0/
%G ru
%F VSGU_2013_6_a0
G. V. Voskresenskaya. The structure of modular form: the phenomen of the section. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2013), pp. 5-12. http://geodesic.mathdoc.fr/item/VSGU_2013_6_a0/

[1] Dummit D., Kisilevsky H., MasKay J., “Multiplicative products of $\eta$-functions”, Contemp. Math., 45, 1985, 89–98 | DOI | MR | Zbl

[2] Koblits N., Vvedenie v ellipticheskie krivye i modulyarnye formy, Mir, M., 1988 | MR

[3] Martin Y., “Multiplicative eta-quotients”, Trans. Amer. Math. Soc., 348 (1996), 4825–4856 | DOI | MR | Zbl

[4] Ono K., The web of modularity: arithmetic of the coefficients of modular forms and q-series, A.M.S., Providence, 2004, 216 pp. | MR

[5] Voskresenskaya G. V., “One special class of modular forms and group representations”, Journal de Theorie des Nombres de Bordeaux, 11 (1999), 247–262 | DOI | MR | Zbl

[6] Voskresenskaya G. V., “Prostranstva modulyarnykh form, soderzhaschie multiplikativnye $\eta$-proizvedeniya”, Vestnik SamGU, 97 (2012), 5–11 | Zbl