The theorem of averaging in the condition of unlimeted speed for almost-periodic functions
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2013), pp. 53-57
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the limit of maximal mean is an independent variable of initial conditions if an axis exists from the convex hull of a set of permitted speeds out of a finite-dimensional space and the components of direction vector of the axis are the independent variables with respect to a spectrum of almost-periodic function. The set of permitted speeds is the right hand of differential inclusion. The limit of maximal mean is taken over all solutions of the Couchy problem for the differential inclusion.
Keywords:
limit of maximal mean, theorem of average, differential inclusion, unlimited right side, almost-periodic function, independent components of direction vector of the axis.
@article{VSGU_2013_3_a5,
author = {O. P. Filatov},
title = {The theorem of averaging in the condition of unlimeted speed for almost-periodic functions},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {53--57},
publisher = {mathdoc},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2013_3_a5/}
}
TY - JOUR AU - O. P. Filatov TI - The theorem of averaging in the condition of unlimeted speed for almost-periodic functions JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2013 SP - 53 EP - 57 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2013_3_a5/ LA - ru ID - VSGU_2013_3_a5 ER -
O. P. Filatov. The theorem of averaging in the condition of unlimeted speed for almost-periodic functions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2013), pp. 53-57. http://geodesic.mathdoc.fr/item/VSGU_2013_3_a5/