The theorem of averaging in the condition of unlimeted speed for almost-periodic functions
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2013), pp. 53-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that the limit of maximal mean is an independent variable of initial conditions if an axis exists from the convex hull of a set of permitted speeds out of a finite-dimensional space and the components of direction vector of the axis are the independent variables with respect to a spectrum of almost-periodic function. The set of permitted speeds is the right hand of differential inclusion. The limit of maximal mean is taken over all solutions of the Couchy problem for the differential inclusion.
Keywords: limit of maximal mean, theorem of average, differential inclusion, unlimited right side, almost-periodic function, independent components of direction vector of the axis.
@article{VSGU_2013_3_a5,
     author = {O. P. Filatov},
     title = {The theorem of averaging in the condition of unlimeted speed for almost-periodic functions},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {53--57},
     year = {2013},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2013_3_a5/}
}
TY  - JOUR
AU  - O. P. Filatov
TI  - The theorem of averaging in the condition of unlimeted speed for almost-periodic functions
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2013
SP  - 53
EP  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2013_3_a5/
LA  - ru
ID  - VSGU_2013_3_a5
ER  - 
%0 Journal Article
%A O. P. Filatov
%T The theorem of averaging in the condition of unlimeted speed for almost-periodic functions
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2013
%P 53-57
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2013_3_a5/
%G ru
%F VSGU_2013_3_a5
O. P. Filatov. The theorem of averaging in the condition of unlimeted speed for almost-periodic functions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2013), pp. 53-57. http://geodesic.mathdoc.fr/item/VSGU_2013_3_a5/

[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989, 472 pp. | MR

[2] Filatov O. P., “Suschestvovanie predelov maksimalnykh srednikh”, Matematicheskie zametki, 67:3 (2000), 433–440 | DOI | MR | Zbl

[3] Filatov O. P., “Teorema ob usrednenii dlya neopredelennykh uslovno-periodicheskikh dvizhenii”, Matematicheskie zametki, 90:2 (2011), 318–320 | DOI | MR | Zbl

[4] Filatov O. P., “Teorema usredneniya dlya pochti periodicheskikh funktsii”, Vestnik Samarskogo gosuniversiteta. Estestvennonauchnaya seriya, 2012, no. 6(97), 100–112

[5] Filatov O. P., “Printsip maksimuma dlya pochti periodicheskikh funktsii v zadachakh vychisleniya predelov maksimalnykh srednikh”, Nekotorye aktualnye problemy sovremennoi matematiki i matematicheskogoobrazovaniya, Gertsenovskie chteniya-2009: materialy nauchnoi konferentsii (Sankt-Peterburg, 13–18 aprelya 2009 g.), BAN, SPb., 2009, 111–117