Simulation of two-dimensional one-phase tracer flow with the use of chromatographic plate theory
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2013), pp. 120-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Generalization of chromatographic plate theory in case of two-dimensional non-sorbing tracer flow in a homogeneous porous media of uniform thickness with equal debit injection and producing wells are considered. It is shown that in this approach approximate calculation of tracer concentration at different times in producing well, and at a fixed time at various porous media points can be carried out.
Keywords: porous media, non-sorbing tracer flow, chromatographic plate theory.
Mots-clés : calculation of concentration
@article{VSGU_2013_3_a13,
     author = {S. Y. Kudryashov and L. A. Onuchak and D. A. Panarin},
     title = {Simulation of two-dimensional one-phase tracer flow with the use of chromatographic plate theory},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {120--127},
     year = {2013},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2013_3_a13/}
}
TY  - JOUR
AU  - S. Y. Kudryashov
AU  - L. A. Onuchak
AU  - D. A. Panarin
TI  - Simulation of two-dimensional one-phase tracer flow with the use of chromatographic plate theory
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2013
SP  - 120
EP  - 127
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2013_3_a13/
LA  - ru
ID  - VSGU_2013_3_a13
ER  - 
%0 Journal Article
%A S. Y. Kudryashov
%A L. A. Onuchak
%A D. A. Panarin
%T Simulation of two-dimensional one-phase tracer flow with the use of chromatographic plate theory
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2013
%P 120-127
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2013_3_a13/
%G ru
%F VSGU_2013_3_a13
S. Y. Kudryashov; L. A. Onuchak; D. A. Panarin. Simulation of two-dimensional one-phase tracer flow with the use of chromatographic plate theory. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2013), pp. 120-127. http://geodesic.mathdoc.fr/item/VSGU_2013_3_a13/

[1] Sokolovskii E. V., Solovev G. B., Trenchikov Yu. I., Indikatornye metody izucheniya neftegazonosnykh plastov, Nedra, M., 1986, 157 pp.

[2] Kanevskaya R. D., Matematicheskoe modelirovanie gidrodinamicheskikh protsessov razrabotki mestorozhdenii uglevodorodov, Institut kompyuternykh issledovanii, M.–Izhevsk, 2002, 140 pp.

[3] Masket M., Techenie odnorodnykh zhidkostei v poristoi srede, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2004, 628 pp.

[4] Aziz Kh., Settari E., Matematicheskoe modelirovanie plastovykh sistem, Institut kompyuternykh issledovanii, M.–Izhevsk, 2004, 416 pp.

[5] K. S. Basniev i dr., Podzemnaya gidravlika, Nedra, M., 1986, 303 pp.

[6] Korn G., Korn T., Spravochnik po matematike (dlya nauchnykh rabotnikov i inzhenerov), Nauka, M., 1973, 832 pp.

[7] Golbert K. A., Vigdergauz M. S., Vvedenie v gazovuyu khromatografiyu, Khimiya, M., 1990, 352 pp.

[8] Nogare S. D., Dzhuvet R. S., Gazozhidkostnaya khromatografiya. Teoriya i praktika, Nedra, L., 1966, 472 pp.

[9] K. I. Sakodynskii i dr., Analiticheskaya khromatografiya, Khimiya, M., 1993, 464 pp.

[10] Chen J. S., Liu C. W., Liang C. P., “Evaluation of longitudinal and transverse dispersivities/distance ratios for tracer test in a radially convergent flow field with scale-dependent dispersion”, Adv. Water Res., 29:6 (2006), 887–898 | DOI

[11] J. S. Chen et al., “Laplace transform power series solution for solute transport in a convergent flow field with scale-dependent dispersion”, Water Resour. Res., 39:8 (2003), 1–10 | DOI