Estimation of delayed loss of stability in differential equations with canards
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2013), pp. 12-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the investigation of phenomenon of delayed loss of stability in singularly perturbed systems of ordinary differential equations. The estimation for delayed loss of stability is obtained for the differential system with a canard. The problem of maximal temperature of safe combustion determination is considered as an illustration for the obtained mathematical result.
Keywords: delayed loss of stability, singularly perturbed systems of differential equations.
Mots-clés : canards
@article{VSGU_2013_3_a1,
     author = {E. S. Golodova and E. A. Shchepakina},
     title = {Estimation of delayed loss of stability in differential equations with canards},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {12--24},
     year = {2013},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2013_3_a1/}
}
TY  - JOUR
AU  - E. S. Golodova
AU  - E. A. Shchepakina
TI  - Estimation of delayed loss of stability in differential equations with canards
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2013
SP  - 12
EP  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2013_3_a1/
LA  - ru
ID  - VSGU_2013_3_a1
ER  - 
%0 Journal Article
%A E. S. Golodova
%A E. A. Shchepakina
%T Estimation of delayed loss of stability in differential equations with canards
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2013
%P 12-24
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2013_3_a1/
%G ru
%F VSGU_2013_3_a1
E. S. Golodova; E. A. Shchepakina. Estimation of delayed loss of stability in differential equations with canards. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2013), pp. 12-24. http://geodesic.mathdoc.fr/item/VSGU_2013_3_a1/

[1] V. I. Arnold i dr., “Teoriya bifurkatsii”, Sovremennye problemy matematiki: Fundamentalnye napravleniya, 5, VINITI, M., 1986, 5–218

[2] Schepakina E. A., “Dva vida smeny ustoichivosti integralnykh mnogoobrazii”, Differentsialnye uravneniya, 40:5 (2004), 713–716 | MR

[3] Shishkova M. A., “Rassmotrenie odnoi sistemy differentsialnykh uravnenii s malym parametrom pri vysshikh proizvodnykh”, Dokl. AN SSSR, 209:3 (1973), 576–579 | Zbl

[4] Neishtadt A. I., “Asimptoticheskoe issledovanie poteri ustoichivosti ravnovesiya pri medlennom prokhozhdenii pary sobstvennykh chisel cherez mnimuyu os”, Uspekhi matem. nauk, 1985, no. 5, 190–191

[5] Neishtadt A. I., “O zatyagivanii poteri ustoichivosti pri dinamicheskikh bifurkatsiyakh”, Differentsialnye uravneniya, 23:12 (1987), 2060–2067 ; 24:2, 226–233 | MR | MR

[6] Schetinina E. V., “Odna zadacha o smene ustoichivosti integralnykh mnogoobrazii”, Izvestiya RAEN. Ser. MMMIU, 3:3 (1999), 129–134

[7] E. Benoit et al., “Chasse au canard”, Collect. Math., 31:3 (1980)

[8] Gorelov G. N., Sobolev V. A., “Duck-trajectories in a thermal explosion problem”, Appl. Math. Lett., 5:6 (1992), 3–6 | DOI | MR | Zbl

[9] Gorelov G. N., Sobolev V. A., “Mathematical modeling of critical phenomena in thermal explosion theory”, Combust. Flame, 87 (1991), 203–210 | DOI

[10] E. F. Mischenko i dr., Periodicheskie dvizheniya i bifurkatsionnye protsessy v singulyarno vozmuschennykh sistemakh, Fizmatlit, M., 1995, 336 pp. | MR

[11] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., “Reshenie singulyarno vozmuschennykh kraevykh zadach metodom “okhoty na utok””, Trudy MIAN, 224, 1999, 187–207 | MR | Zbl

[12] Sobolev V. A., Schepakina E. A., “Traektorii-utki v odnoi zadache teorii goreniya”, Differentsialnye uravneniya, 32:9 (1996), 1175–1184 | MR | Zbl

[13] Schepakina E. A., “Kriticheskie usloviya samovosplameneniya v poristoi srede”, Khimicheskaya fizika, 20:7 (2001), 3–9

[14] Schepakina E. A., “Prityagivayusche-ottalkivayuschie integralnye poverkhnosti v zadachakh goreniya”, Matematicheskoe modelirovanie, 14:3 (2002), 30–42 | MR

[15] Schepakina E. A., “Singulyarnye vozmuscheniya v zadache modelirovaniya bezopasnykh rezhimov goreniya”, Matematicheskoe modelirovanie, 15:8 (2003), 113–117

[16] Shchepakina E., “Black swans and canards in self-ignition problem”, Nonlinear Analysis: Real Word Applications, 4 (2003), 45–50 | DOI | MR | Zbl

[17] Sobolev V. A., Schepakina E. A., Reduktsiya modelei i kriticheskie yavleniya v makrokinetike, Fizmatlit, M., 2010, 320 pp. | Zbl

[18] Nefedov N. N., Schneider K. R., “On immediate-delayed exchange of stabilities and periodic forced canards”, Zhurnal vychislitelnoi matematiki i matem. fiziki, 48:1 (2008), 46–61 | MR | Zbl

[19] Golodova E. S., Schepakina E. A., “Modelirovanie bezopasnykh protsessov goreniya s maksimalnoi temperaturoi”, Matematicheskoe modelirovanie, 20:5 (2008), 55–58

[20] Golodova E. S., Shchepakina E. A., “Maximal combustion temperature estimation”, Journal of Physics: Conf. Series, 55 (2006), 94–104 | DOI | MR