Stability of rotating circular cylindrical shell subject to an axial and rotational fluid flow
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2012), pp. 84-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with the stability analysis of rotating cylindrical shells conveying a corotating fluid. The problem is solved by the finite element method for shells subjected to different boundary conditions. It has been found that the loss of stability for a rotating shell under the action of the fluid having both axial and circumferential velocity components depends on the type of boundary conditions imposed on the shell ends. The results of numerical calculations have shown that for different variants of boundary conditions a simultaneous rotation of shell and the fluid causes an increase or decrease in the critical velocity of axial fluid flow.
Keywords: classical theory of shells, rotating shell, compressible potential fluid with axial and circumferential flow, finite element method, stability.
@article{VSGU_2012_9_a8,
     author = {S. A. Bochkarev and V. P. Matveenko},
     title = {Stability of rotating circular cylindrical shell subject to an axial and rotational fluid flow},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {84--97},
     year = {2012},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2012_9_a8/}
}
TY  - JOUR
AU  - S. A. Bochkarev
AU  - V. P. Matveenko
TI  - Stability of rotating circular cylindrical shell subject to an axial and rotational fluid flow
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2012
SP  - 84
EP  - 97
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/VSGU_2012_9_a8/
LA  - ru
ID  - VSGU_2012_9_a8
ER  - 
%0 Journal Article
%A S. A. Bochkarev
%A V. P. Matveenko
%T Stability of rotating circular cylindrical shell subject to an axial and rotational fluid flow
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2012
%P 84-97
%N 9
%U http://geodesic.mathdoc.fr/item/VSGU_2012_9_a8/
%G ru
%F VSGU_2012_9_a8
S. A. Bochkarev; V. P. Matveenko. Stability of rotating circular cylindrical shell subject to an axial and rotational fluid flow. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2012), pp. 84-97. http://geodesic.mathdoc.fr/item/VSGU_2012_9_a8/

[1] Lai Y.-C., Chow C.-Y., “Stability of a rotating thin elastic tube containing a fluid flow”, Zeitschrift für angewande Mathematik und Mechanik, 53 (1973), 511–517 | DOI | Zbl

[2] Vorobev Yu. S., Detistov S. I., “Vliyanie potoka gaza na kolebaniya vraschayuschikhsya tsilindricheskikh obolochek”, Prikladnaya mekhanika, 21:7 (1985), 39–43

[3] Chen T. L. C., Bert C. W., “Wave propagation in isotropic- or composite-material piping conveying swirling liquid”, Nuclear Engineering and Design, 42:2 (1977), 247–255 | DOI

[4] Chen T. L. C., Bert C. W., “Dynamic stability of isotropic or composite material cylindrical shells containing swirling fluid flow”, J. Appl. Mech., 44 (1977), 112–116 | DOI | Zbl

[5] Srinivasan A. V., “Flutter analysis of rotating cylindrical shells immersed in a circular helical flowfield of air”, AIAA J., 9 (1971), 394–400 | DOI

[6] David T. S., Srinivasan A. V., “Flutter of coaxial cylindrical shells in a incompressible axisymmetric flow”, AIAA J., 12 (1974), 1631–1635 | DOI | Zbl

[7] Cortelezzi L., Pong A., Pa\"idoussis M. P., “Flutter of rotating shells with a corotating axial flow”, J. Appl. Mech., 71:1 (2004), 143–145 | DOI | Zbl

[8] Gosselin F., Pa\"idoussis M. P., “Blocking in the rotating axial flow in a corotating flexible shell”, J. Appl. Mech., 76:1 (2009), 011001 | DOI

[9] Ilgamov M. A., Kolebaniya uprugikh obolochek, soderzhaschikh zhidkost i gaz, Nauka, M., 1969, 184 pp.

[10] Bochkarev S. A., Matveenko V. P., “Chislennoe issledovanie vliyaniya granichnykh uslovii na dinamiku povedeniya tsilindricheskoi obolochki s protekayuschei zhidkostyu”, Izv. RAN. MTT, 2008, no. 3, 189–199

[11] Alfutov N. A., Zinovev P. A., V. G. Popov, Raschet mnogosloinykh plastin i obolochek iz kompozitsionnykh materialov, Mashinostroenie, M., 1984, 264 pp.

[12] Sivadas K. R., Ganesan N., “Effect of rotation on vibration of moderarately thick circular cylindrical shells”, J. Vib. Acoust., 116:1 (1994), 198–202 | DOI

[13] Matveenko V. P., “Ob odnom algoritme resheniya zadachi o sobstvennykh kolebaniyakh uprugikh tel metodom konechnykh elementov”, Kraevye zadachi teorii uprugosti i vyazkouprugosti, Sverdlovsk, 1980, 20–24

[14] Dzhordzh A., Lyu Dzh., Chislennoe reshenie bolshikh razrezhennykh sistem uravnenii, Mir, M., 1984, 333 pp. | MR

[15] Bochkarev S. A., “Sobstvennye kolebaniya vraschayuscheisya krugovoi tsilindricheskoi obolochki s zhidkostyu”, Vychislitelnaya mekhanika sploshnykh sred, 3:2 (2010), 24–33