On development of multiscale fracture models
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2012), pp. 70-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An approximate solution of nonlinear eigenvalue problem arising from the Mode I crack problem in a nonlinear power-law medium is obtained. The perturbation technique is used. The method allows to find the analytical formula expressing the eigenvalue as the function of parameters of constitutive law and eigenvalue corresponding to the linear undisturbed problem.
Keywords: nonlinear eigenvalue problem, stress-strain state near the crack tip, stress singularity, analytical solution.
Mots-clés : multiscale fracture model, perturbation method
@article{VSGU_2012_9_a7,
     author = {E. M. Adylina and L. V. Stepanova},
     title = {On development of multiscale fracture models},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {70--83},
     year = {2012},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2012_9_a7/}
}
TY  - JOUR
AU  - E. M. Adylina
AU  - L. V. Stepanova
TI  - On development of multiscale fracture models
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2012
SP  - 70
EP  - 83
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/VSGU_2012_9_a7/
LA  - ru
ID  - VSGU_2012_9_a7
ER  - 
%0 Journal Article
%A E. M. Adylina
%A L. V. Stepanova
%T On development of multiscale fracture models
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2012
%P 70-83
%N 9
%U http://geodesic.mathdoc.fr/item/VSGU_2012_9_a7/
%G ru
%F VSGU_2012_9_a7
E. M. Adylina; L. V. Stepanova. On development of multiscale fracture models. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2012), pp. 70-83. http://geodesic.mathdoc.fr/item/VSGU_2012_9_a7/

[1] Byui Kh. D., Mekhanika razrusheniya: obratnye zadachi i resheniya, Fizmatlit, M., 2011, 412 pp.

[2] Carpinteri A., Paggi M., “Asymptotic analysis in Linear Elasticity: From the pioneering studies by Wieghardt and Irwin until today”, Engineering Fracture Mechanics, 76 (2009), 1771–1784 | DOI

[3] Stepanova L. V., Matematicheskie metody mekhaniki razrusheniya, Samarskii universitet, Samara, 2006, 232 pp.

[4] Stepanova L., “Eigenspectra and orders of stress singularity at a mode I crack tip for a power-law medium”, Comptes Rendus Acad. Sciences. Mecanique, 336:1,2 (2008), 232–237 | DOI | Zbl

[5] Morozov E. M., Muizemnek A. Yu., Shadskii A. S., ANSYS v rukakh inzhenera: mekhanika razrusheniya, LENAND, M., 2010, 456 pp.

[6] Sih G. C., “Crack tip mechanics based on progressive damage of arrow: Hierarchy of singularities and multiscale segment”, TAFM, 51 (2009), 11–32

[7] Sih G. C., Tang X. S., “Simultaneity of multiscaling for macro meso micro damage model represented by strong singularities”, TAFM, 42 (2004), 199–225

[8] Sih G. C., Tang X. S., “Weak and strong singularities reflecting multiscale damage: micro-boundary conditions for free-free, fixed-fixed and free-fixed constraints”, J. Theoret. Appl. Fract. Mech., 43:1 (2005), 1–58 | DOI | MR

[9] Williams M. L., “Stress singularities resulting from various boundary conditions in angular corners of plates in extensions. ASME”, J. Appl. Mech., 74 (1952), 526–528.

[10] Williams M. L., “On the stress distribution at the base of a stationary crack. ASME”, J. Appl. Mech., 24 (1957), 109–114. | MR | Zbl

[11] Li J., Recho N., Methodes asymptotiques en mecanique de la rupture, Hermes Science Publications, Paris, 2002, 262 pp.

[12] Hutchinson J. W., “Singular behaviour at the end of tensile crack in a hardening material”, J. Mech. Phys. Solids, 16:1 (1968), 13–31 | DOI | Zbl

[13] Hutchinson J. W., “Plastic stress and strain fields at a crack tip”, J. Mech. Phys. Solids, 16:5 (1968), 337–347 | DOI

[14] Rice J. R., Rosengren G. F., “Plane strain deformation near a crack tip ina power-law harderning material”, J. Mech. Phys. Solids, 16 (1968), 1–12 | DOI | Zbl

[15] Naife A. Kh., Vvedenie v metody vozmuschenii, Mir, M., 1984, 535 pp. | MR

[16] Nayfeh A. H., Mook D. T., Nonlinear oscillations, John Wiley and Sons, New York, 1995, 704 pp. | MR | Zbl

[17] Anheuser M., Gross D., “Higher order fields at crack and notch tips in power-law materials under longitudinal shear”, Archive of Applied Mechanics, 64 (1994), 509–518 | DOI | Zbl

[18] Adylina E. M., Igonin S. A., Stepanova L. V., “O nelineinoi zadache na sobstvennye znacheniya, sleduyuschei iz analiza napryazhenii u vershiny ustalostnoi treschiny”, Vestnik SamGU. Estestvennonauchnaya seriya, 2012, no. 3/1(94), 83–102

[19] Kudryashov N. A., Metody nelineinoi matematicheskoi fiziki, Intellekt, Dolgoprudnyi, 2010, 368 pp.

[20] Polyanin A. D., Zaitsev V. F., Spravochnik po nelineinym uravneniyam matematicheskoi fiziki: tochnye resheniya, Fizmatlit, M., 2002, 432 pp. | MR

[21] Polyanin A. D., Zaitsev V. F., Zhurov A. I., Metody resheniya nelineinykh uravnenii matematicheskoi fiziki i mekhaniki, Fizmatlit, M., 2005, 256 pp.

[22] Liao S., Beyond Perturbation. Introduction to the homotopy analysis method, Charman and Hall, Boca Raton–London–New York–Washington, 2004, 336 pp. | MR

[23] Stepanova L. V., Matematicheskie metody mekhaniki razrusheniya, Fizmatlit, M., 2009, 336 pp. | Zbl

[24] Barenblatt G. I., Avtomodelnye yavleniya – analiz razmernostei i skeiling, Intellekt, Dolgoprudnyi, 2009, 216 pp.