Uniform exhaustivity of a family of regular set functions on topological spaces
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2012), pp. 61-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conditions for the uniform exhaustivity of a family of regular set functions defined on an algebra $\Sigma$ of subsets of a $\sigma$-topological space and taking values in arbitrary topological space are found.
Keywords: regular set functions, $\sigma$-topological space, uniformly exhaustive set functions, uniformly quasi-triangular set functions, composition set functions, outer measures, additive set functions.
@article{VSGU_2012_9_a6,
     author = {T. A. Sribnaya},
     title = {Uniform exhaustivity of a~family of regular set functions on topological spaces},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {61--69},
     year = {2012},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2012_9_a6/}
}
TY  - JOUR
AU  - T. A. Sribnaya
TI  - Uniform exhaustivity of a family of regular set functions on topological spaces
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2012
SP  - 61
EP  - 69
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/VSGU_2012_9_a6/
LA  - ru
ID  - VSGU_2012_9_a6
ER  - 
%0 Journal Article
%A T. A. Sribnaya
%T Uniform exhaustivity of a family of regular set functions on topological spaces
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2012
%P 61-69
%N 9
%U http://geodesic.mathdoc.fr/item/VSGU_2012_9_a6/
%G ru
%F VSGU_2012_9_a6
T. A. Sribnaya. Uniform exhaustivity of a family of regular set functions on topological spaces. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2012), pp. 61-69. http://geodesic.mathdoc.fr/item/VSGU_2012_9_a6/

[1] Aleksandrov A. D., “Additivnye funktsii mnozhestva v abstraktnykh prostranstvakh”, Mat. cb., 9(51) (1941), 563–628

[2] Sazhenkov A. N., Printsip ogranichennosti dlya mer, dis. $\dots$ kand. fiz.-mat. nauk, Novosibirsk, 1984, 63 pp.

[3] Klimkin V. M., Sribnaya T. A., “Ischerpyvaemost regulyarnoi funktsii mnozhestva v topologicheskom prostranstve”, Mat. zametki, 50:5 (1991), 43–47 | MR | Zbl

[4] Sribnaya T. A., “Ravnomernaya ischerpyvaemost semeistva regulyarnykh vektornykh vneshnikh mer”, Vestnik SamGU, 2(52) (2007), 57–66 | MR

[5] Klimkin V. M., Vvedenie v teoriyu funktsii mnozhestva, Izd-vo Saratovskogo gos. un-ta, Saratov, 1989, 210 pp. | Zbl

[6] Sazhenkov A. N., “Ogranichennost vektornykh vneshnikh mer”, Matem. zametki, 25:6 (1979), 913–917 | MR | Zbl

[7] Lucia P., Morales P., “Equivalence of Brooks-Jewett, Vitali-Hahn-Saks and Nikodym convergence theorems for uniform semigroup-valued additive functions on a Boolean ring”, Ricerche Mat., 35 (1986), 75–87 | MR | Zbl

[8] Andrea A. B., Lucia P., “The Brooks-Jewett Theorem on an Orthomodular Lattice”, Journ. of Math. Anal. and Appl., 154 (1991), 507–522 | DOI | MR | Zbl