On a~problem with generalized operators of fractional differentiation for a~degenerated inside a~domain hyperbolic equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2012), pp. 52-60

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a problem with Saigo operators of fractional differentiation in a boundary condition on a characteristic part of a boundary. The unique solvability of this problem is proved.
Keywords: integral and derivative of Riemann–Liouville fractional order, integral equations of Fredholm, Gauss hypergeometric function, kernel resolvent.
@article{VSGU_2012_9_a5,
     author = {O. A. Repin and S. K. Kumykova},
     title = {On a~problem with generalized operators of fractional differentiation for a~degenerated inside a~domain hyperbolic equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {52--60},
     publisher = {mathdoc},
     number = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2012_9_a5/}
}
TY  - JOUR
AU  - O. A. Repin
AU  - S. K. Kumykova
TI  - On a~problem with generalized operators of fractional differentiation for a~degenerated inside a~domain hyperbolic equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2012
SP  - 52
EP  - 60
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2012_9_a5/
LA  - ru
ID  - VSGU_2012_9_a5
ER  - 
%0 Journal Article
%A O. A. Repin
%A S. K. Kumykova
%T On a~problem with generalized operators of fractional differentiation for a~degenerated inside a~domain hyperbolic equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2012
%P 52-60
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2012_9_a5/
%G ru
%F VSGU_2012_9_a5
O. A. Repin; S. K. Kumykova. On a~problem with generalized operators of fractional differentiation for a~degenerated inside a~domain hyperbolic equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2012), pp. 52-60. http://geodesic.mathdoc.fr/item/VSGU_2012_9_a5/