Keywords: Voskresenskii model
@article{VSGU_2012_9_a3,
author = {M. V. Grekhov},
title = {N\'eron model of two-dimensional anisotropic algebraic tori over local fields},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {31--40},
year = {2012},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2012_9_a3/}
}
M. V. Grekhov. Néron model of two-dimensional anisotropic algebraic tori over local fields. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2012), pp. 31-40. http://geodesic.mathdoc.fr/item/VSGU_2012_9_a3/
[1] Voskresenskii V. E., Algebraicheskie tory, Nauka, M., 1977, 224 pp. | MR
[2] Platonov V. P., Rapinchuk A. S., Algebraicheskie gruppy i teoriya chisel, Nauka, M., 1991, 656 pp. | MR
[3] Serre J.-P., Local Fields, Springer-Verlag New York Inc., New York, 1979, 241 pp. | MR
[4] Dzh. Kassels, A. Frelikh(red.), Algebraicheskaya teoriya chisel, Mir, M., 1969, 484 pp. | MR
[5] Voskresenskii V. E., Biratsionalnaya geometriya lineinykh algebraicheskikh grupp, MTsNMO, M., 2009, 403 pp.
[6] Popov S. Yu., Standard Integral Models of Algebraic Tori, Preprintreihe des SFB 478 – Geometrische Strukturen in der Mathematik, 2003, 31 pp. | MR
[7] Bosch S., Lütkebohmert W., Raynaud M., Néron Models, Springer-Verlag, Berlin–Heidelberg, 1990, 325 pp. | MR
[8] Ching-Li Ch., Jiu-Kang Yu., Congruences of Néron models for tori and the Artin conductor, National Center for Theoretical Science, National Tsing-Hua University, Hsinchu, Taiwan, 1999, 30 pp.
[9] Voskresenskii V. E., Kunyavskii B. E., Moroz B. Z., “Tselye modeli algebraicheskikh torov”, Algebra i analiz, 14:1 (2002), 35–52 | MR