Monte-carlo simulations of phase transitions in the two-dimensional Ising model with long-range correlations
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2012), pp. 159-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article phase transitions in the modified two-dimensional Ising model with long-range correlations investigated. This model was studied with Monte-Carlo method and Metropolis algorithm. Critical temperature increase is shown in such model.
Mots-clés : phase transition, Monte-Carlo simulation.
Keywords: Ising model with long range correlations
@article{VSGU_2012_9_a15,
     author = {A. A. Biryukov and Ya. V. Degtyareva and M. A. Shleenkov},
     title = {Monte-carlo simulations of phase transitions in the two-dimensional {Ising} model with long-range correlations},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {159--163},
     year = {2012},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2012_9_a15/}
}
TY  - JOUR
AU  - A. A. Biryukov
AU  - Ya. V. Degtyareva
AU  - M. A. Shleenkov
TI  - Monte-carlo simulations of phase transitions in the two-dimensional Ising model with long-range correlations
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2012
SP  - 159
EP  - 163
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/VSGU_2012_9_a15/
LA  - ru
ID  - VSGU_2012_9_a15
ER  - 
%0 Journal Article
%A A. A. Biryukov
%A Ya. V. Degtyareva
%A M. A. Shleenkov
%T Monte-carlo simulations of phase transitions in the two-dimensional Ising model with long-range correlations
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2012
%P 159-163
%N 9
%U http://geodesic.mathdoc.fr/item/VSGU_2012_9_a15/
%G ru
%F VSGU_2012_9_a15
A. A. Biryukov; Ya. V. Degtyareva; M. A. Shleenkov. Monte-carlo simulations of phase transitions in the two-dimensional Ising model with long-range correlations. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2012), pp. 159-163. http://geodesic.mathdoc.fr/item/VSGU_2012_9_a15/

[1] Elesin V. F., Kashurnikov V. A., Fizika fazovykh perekhodov, MIFI, M., 1997, 180 pp.

[2] Ising E., “Beitrag zur Theorie des Ferro- und Paramagnetimus”, Z. Phys., 1924, no. 31, 253–258

[3] Onsager L., Phys Rev., 65:3,4 (1944), 117–149 | DOI | MR | Zbl

[4] Izyumov Yu. A., Skryabin Yu. N., Statisticheskaya mekhanika magnitouporyadochennykh sistem, Nauka, M., 1987, 264 pp. | MR

[5] McCoy B. M., Tsun Wu Tai, The two-dimensional Ising model, Harvard Univ. Press, Cityplace Cambridge, MA, 1973

[6] Zinovev Yu. M., “Spontannaya namagnichennost v dvumernoi modeli Izinga”, TMF, 136 (2003), 444–462 | DOI | MR

[7] Hall A., “On an experiment determination of $\pi$”, Messeng. Math., 1873, no. 2 | Zbl

[8] Metropolis N., Ulam S., “The Monte-Carlo method”, J. Amer. Stat. Assos., 44:247 (1949) | MR | Zbl

[9] Sobol I. M., Chislennye metody Monte-Karlo, Nauka, M., 1973 | MR

[10] Kroits M., Kvarki, glyuony i reshetki, Mir, M., 1987, 148–160

[11] Binder K., Kheerman D. V., Modelirovanie metodom Monte-Karlo v statisticheskoi fizike, Nauka, M., 1995, 142 pp. | MR