New case of integrability in dynamics of multi-dimensional body
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2012), pp. 136-150
Voir la notice de l'article provenant de la source Math-Net.Ru
In this chapter the new results are systematized on study of the equations of motion of dynamically symmetrical four-dimensional ($4D-$) rigid body which residing in a certain nonconservative field of forces in case of special dynamical symmetry. Its type is unoriginal from dynamics of the real smaller-dimensional rigid bodies of interacting with a resisting medium on the laws of a jet flow, under which the nonconservative tracing force acts onto the body and forces both the value of velocity of a certain typical point of the rigid body and the certain phase variable to remain as constant in all time, that means the presence in system nonintegrable servo-constraints.
Keywords:
multi-dimensional rigid body, integrability, transcendental first integral.
@article{VSGU_2012_9_a13,
author = {N. V. Pokhodnya and M. V. Shamolin},
title = {New case of integrability in dynamics of multi-dimensional body},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {136--150},
publisher = {mathdoc},
number = {9},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2012_9_a13/}
}
TY - JOUR AU - N. V. Pokhodnya AU - M. V. Shamolin TI - New case of integrability in dynamics of multi-dimensional body JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2012 SP - 136 EP - 150 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2012_9_a13/ LA - ru ID - VSGU_2012_9_a13 ER -
N. V. Pokhodnya; M. V. Shamolin. New case of integrability in dynamics of multi-dimensional body. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2012), pp. 136-150. http://geodesic.mathdoc.fr/item/VSGU_2012_9_a13/