Optimal control of threefold integrator according to minimum consumption
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2012), pp. 118-129
Voir la notice de l'article provenant de la source Math-Net.Ru
The solution of optimal control problem of the threefold integrator with any boundary conditions by method of moments is considered. It is shown that in case of minimization of total impulse of control influence or control consumption, the solution of $L_{\infty}$-moments problem is approximated by optimal impulse control. The general solution of the problem is obtained and the structure of optimal control is researched. The example of solution of a problem with symmetric boundary conditions is considered.
Keywords:
threefold integrator, optimal control, control consumptions, problem of moments, Krasovsky's maximum principle, impulse control.
@article{VSGU_2012_9_a11,
author = {Yu. N. Gorelov and M. V. Morozova},
title = {Optimal control of threefold integrator according to minimum consumption},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {118--129},
publisher = {mathdoc},
number = {9},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2012_9_a11/}
}
TY - JOUR AU - Yu. N. Gorelov AU - M. V. Morozova TI - Optimal control of threefold integrator according to minimum consumption JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2012 SP - 118 EP - 129 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2012_9_a11/ LA - ru ID - VSGU_2012_9_a11 ER -
%0 Journal Article %A Yu. N. Gorelov %A M. V. Morozova %T Optimal control of threefold integrator according to minimum consumption %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2012 %P 118-129 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGU_2012_9_a11/ %G ru %F VSGU_2012_9_a11
Yu. N. Gorelov; M. V. Morozova. Optimal control of threefold integrator according to minimum consumption. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2012), pp. 118-129. http://geodesic.mathdoc.fr/item/VSGU_2012_9_a11/