Optimal control of threefold integrator according to minimum consumption
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2012), pp. 118-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solution of optimal control problem of the threefold integrator with any boundary conditions by method of moments is considered. It is shown that in case of minimization of total impulse of control influence or control consumption, the solution of $L_{\infty}$-moments problem is approximated by optimal impulse control. The general solution of the problem is obtained and the structure of optimal control is researched. The example of solution of a problem with symmetric boundary conditions is considered.
Keywords: threefold integrator, optimal control, control consumptions, problem of moments, Krasovsky's maximum principle, impulse control.
@article{VSGU_2012_9_a11,
     author = {Yu. N. Gorelov and M. V. Morozova},
     title = {Optimal control of threefold integrator according to minimum consumption},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {118--129},
     year = {2012},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2012_9_a11/}
}
TY  - JOUR
AU  - Yu. N. Gorelov
AU  - M. V. Morozova
TI  - Optimal control of threefold integrator according to minimum consumption
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2012
SP  - 118
EP  - 129
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/VSGU_2012_9_a11/
LA  - ru
ID  - VSGU_2012_9_a11
ER  - 
%0 Journal Article
%A Yu. N. Gorelov
%A M. V. Morozova
%T Optimal control of threefold integrator according to minimum consumption
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2012
%P 118-129
%N 9
%U http://geodesic.mathdoc.fr/item/VSGU_2012_9_a11/
%G ru
%F VSGU_2012_9_a11
Yu. N. Gorelov; M. V. Morozova. Optimal control of threefold integrator according to minimum consumption. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2012), pp. 118-129. http://geodesic.mathdoc.fr/item/VSGU_2012_9_a11/

[1] Raushenbakh B. V., Tokar E. N., Upravlenie orientatsiei kosmicheskikh apparatov, Nauka, M., 1974, 600 pp.

[2] Atans M., Falb P., Optimalnoe upravlenie, Mashinostroenie, M., 1968, 764 pp.

[3] Krasovskii N. N., Teoriya upravleniya dvizheniem: lineinye sistemy, Nauka, M., 1965, 476 pp. | MR

[4] Moroz A. I., Kurs teorii sistem, Vysshaya shkola, M., 1987, 304 pp.

[5] Bellman R., Dreifus S., Prikladnye zadachi dinamicheskogo programmirovaniya, Nauka, M., 1965, 460 pp. | Zbl