Theoretical methods of nanostructures investigation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2012), pp. 106-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, a review is presented concerning the most modern theoretical methods aimed at investigation of various nanostructures properties. The basic concepts of ab initio methods, density functional, semi-empirical and empirical methods are considered. The applicability boundaries of calculation schemes utilized in the aforementioned methods are denoted.
Keywords: molecular mechanics, tight binding approximation, Hamiltonian, coarse-grained model, density functional, Lennard-Jones potential, molecular orbital.
@article{VSGU_2012_9_a10,
     author = {O. E. Glukhova and I. V. Kirillova and I. N. Salii and A. S. Kolesnikova and E. L. Kossovich and M. M. Slepchenkov and A. N. Savin and D. S. Shmygin},
     title = {Theoretical methods of nanostructures investigation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {106--117},
     year = {2012},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2012_9_a10/}
}
TY  - JOUR
AU  - O. E. Glukhova
AU  - I. V. Kirillova
AU  - I. N. Salii
AU  - A. S. Kolesnikova
AU  - E. L. Kossovich
AU  - M. M. Slepchenkov
AU  - A. N. Savin
AU  - D. S. Shmygin
TI  - Theoretical methods of nanostructures investigation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2012
SP  - 106
EP  - 117
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/VSGU_2012_9_a10/
LA  - ru
ID  - VSGU_2012_9_a10
ER  - 
%0 Journal Article
%A O. E. Glukhova
%A I. V. Kirillova
%A I. N. Salii
%A A. S. Kolesnikova
%A E. L. Kossovich
%A M. M. Slepchenkov
%A A. N. Savin
%A D. S. Shmygin
%T Theoretical methods of nanostructures investigation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2012
%P 106-117
%N 9
%U http://geodesic.mathdoc.fr/item/VSGU_2012_9_a10/
%G ru
%F VSGU_2012_9_a10
O. E. Glukhova; I. V. Kirillova; I. N. Salii; A. S. Kolesnikova; E. L. Kossovich; M. M. Slepchenkov; A. N. Savin; D. S. Shmygin. Theoretical methods of nanostructures investigation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2012), pp. 106-117. http://geodesic.mathdoc.fr/item/VSGU_2012_9_a10/

[1] B. Smith et al., “Computer simulations of surfactant self-assembly”, Langmuir, 9 (1993), 9–11 | DOI | Zbl

[2] Palmer B. J., Liu J., “Simulation of micelle self-assembly in surfactant solutions”, Langmuir, 12 (1996), 746–753 | DOI | MR

[3] Goetz R., Lipowsky R., “Computer simulations of bilayer membranes: Self-assembly and interfacial tension”, Journal of Chemical Physics, 108:17 (1998), 7397–7409 | DOI

[4] Den Otter W. K., Briels W. J., “The bending rigidity of an amphiphilic bilayer from equilibrium and nonequi-librium molecular dynamics”, Journal of Chemical Physics, 118 (2003), 4712–4720 | DOI

[5] Blatov V. A., Shevchenko A. P., Peresypkina E. V., Poluempiricheskie raschetnye metody kvantovoi khimii, uchebnoe posobie, Univers-grupp, Samara, 2005, 32 pp.

[6] Glukhova O. E., Zhbanov A. I., “Ravnovesnoe sostoyanie nanoklasterov S60, S70, S72 i lokalnye defekty molekulyarnogo ostova”, Fizika tverdogo tela, 45:1 (2003), 189–196

[7] I. Kwon et al., “Transferable tight-binding models for silicon”, Phys. Rev. B, 49:11 (1994), 7242–7250 | DOI

[8] H. Amara et al., “Tight-binding potential for atomistic simulations of carbon interacting with transition metals: Application to the Ni-C system”, Phys. Rev. B, 79:1 (2009), 014109(17) | DOI | MR

[9] Granot R., Baer R., “A tight-binding potential for helium in carbon systems”, J. Chem. Phys., 129:21 (2008), 214102(5) | DOI

[10] Jasper A. W., Schultz N. E., Truhlar D. G., “Transferability of orthogonal and nonorthogonal tight-binding models for aluminum clusters and nanoparticles”, J. Chem. Theory Comput., 3 (2007), 210–218 | DOI

[11] Glukhova O. E., Terentev O. A., “Teoreticheskoe issledovanie elektronnykh i mekhanicheskikh svoistv C-N odnosloinykh nanotrubok”, Fizika volnovykh protsessov i radiotekhnicheskie sistemy, 10:4 (2007), 4–7

[12] Goodwin L., “A new tight binding parametrization for carbon”, J. Phys.: Condens. Matter., 3 (1991), 3869–3878 | DOI

[13] Satanin A. M., Vvedenie v teoriyu funktsionala plotnosti, uchebno-metodicheskoe posobie, NGU, Nizhnii Novgorod, 2009, 64 pp.

[14] Tersoff J., “Modeling solid-state chemistry: Interatomic potentials for mnlticomponent systems”, Phys. Rev. B, 39:8 (1989), 5566–5568 | DOI

[15] Brenner D. W., “Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films”, Phys. Rev. B, 42:15 (1990), 9458–9471 | DOI

[16] Stuart S. J., Tutein A. B., Harrison J. A., “A reactive potential for hydrocarbons with intermolecular interactions”, J. Chem. Phys., 112:14 (2000), 6472–6486 | DOI

[17] Glukhova O. E., “Izuchenie mekhanicheskikh svoistv uglerodnykh nanotrubok struchkovogo tipa na molekulyarno-mekhanicheskoi modeli”, Fizika volnovykh protsessov i RS, 12:1 (2009), 69–75

[18] F. Benkabou et al., “Structural and dynamical properties of zincblende GaN”, Phys. Stat. Sol., 209 (1998), 223–233 | 3.0.CO;2-8 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[19] Yeak S. H., Ng T. Y., Liew K. M., “Multiscale modeling of carbon nanotubes under axial tension and compression”, Phys. Rev. B, 72:16 (2005), 165401(9) | DOI

[20] Wang Y., Tomanek D., Bertsh G. F., “Stiffness of a solid composed of C60 clusters”, Phys. Rev. B, 44:12 (1991), 6562–5665 | DOI

[21] Marrink S. J., de Vries A. H., Mark A. E., “Coarse Grained Model for Semiquantitative Lipid Simulations”, Journal of Physical Chemistry. B, 108 (2004), 750–760 | DOI