On one problem in infinity strip for biaxisymmetric Helmholz equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2012), pp. 5-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Boundary value problem with special conditions on line $y=0$ in infinity strip 0generalized biaxisymmetric Helmholz equation is set. Conditions of this problem set difference of some one-sided limits of known functions. Unknown function is zero in the right boundary and in infinity. Unknown functions with weight for one parameter $\mu$ value and without weight for other. Existence of solution is proved for some conditions. Uniqueness of solutions is proved for other some conditions.
Keywords: Helmholz equation, problem about leap, Bessel function, Fourie – Bessel series
Mots-clés : maximal principle.
@article{VSGU_2012_9_a0,
     author = {A. A. Abashkin},
     title = {On one problem in infinity strip for biaxisymmetric {Helmholz} equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {5--13},
     year = {2012},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2012_9_a0/}
}
TY  - JOUR
AU  - A. A. Abashkin
TI  - On one problem in infinity strip for biaxisymmetric Helmholz equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2012
SP  - 5
EP  - 13
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/VSGU_2012_9_a0/
LA  - ru
ID  - VSGU_2012_9_a0
ER  - 
%0 Journal Article
%A A. A. Abashkin
%T On one problem in infinity strip for biaxisymmetric Helmholz equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2012
%P 5-13
%N 9
%U http://geodesic.mathdoc.fr/item/VSGU_2012_9_a0/
%G ru
%F VSGU_2012_9_a0
A. A. Abashkin. On one problem in infinity strip for biaxisymmetric Helmholz equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 9 (2012), pp. 5-13. http://geodesic.mathdoc.fr/item/VSGU_2012_9_a0/

[1] Pleschinskii N. B., Uravnenie Gelmgoltsa v poluploskosti i skalyarnye zadachi difraktsii elektromagnitnykh voln na ploskikh metallicheskikh ekranakh, Izd-vo KGU, Kazan, 2003, 30 pp.

[2] Shimkovich E. V., “O vesovykh kraevykh zadachakh dlya vyrozhdayuschegosya uravneniya ellipticheskogo tipa v polupolose”, Litovskii matematicheskii sbornik, 30 (1990), 185–196 | MR | Zbl

[3] Lerner M. E., Repin O. A., “Nelokalnye kraevye zadachi v vertikalnoi polupolose dlya obobschennogo osesimmetricheskogo uravneniya Gelmgoltsa”, Differentsialnye uravneniya, 37 (2001), 1562–1564 | MR | Zbl

[4] Moiseev E. I., “O razreshimosti odnoi nelokalnoi kraevoi zadachi”, Differentsialnye uravneniya, 37 (2001), 1565–1567 | MR | Zbl

[5] Lebedev N. N., Spetsialnye funktsii i ikh prilozheniya, Lan, SPb., 2010, 368 pp.

[6] Marichev O. I., Kilbas A. A., Repin O. A., Kraevye zadachi dlya uravnenii v chastnykh proizvodnykh s razryvnymi koeffitsientami, Izd-vo SGEU, Samara, 2008, 275 pp. | Zbl