Parameterization of slow invariant manifolds in the model of the spread of malaria
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2012), pp. 66-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper the Ross Macdonald model of the distribution of malaria is considered. The order reduction of this model on the basis of parametric slow invariant manifolds is realized. As a result a simplified model which describes with a high accuracy the behavior of the solution of the original system is obtained.
Keywords: invariant manifolds, asymptotic expansion.
Mots-clés : singular perturbation
@article{VSGU_2012_6_a8,
     author = {E. A. Tropkina},
     title = {Parameterization of slow invariant manifolds in the model of the spread of malaria},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {66--74},
     year = {2012},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2012_6_a8/}
}
TY  - JOUR
AU  - E. A. Tropkina
TI  - Parameterization of slow invariant manifolds in the model of the spread of malaria
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2012
SP  - 66
EP  - 74
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2012_6_a8/
LA  - ru
ID  - VSGU_2012_6_a8
ER  - 
%0 Journal Article
%A E. A. Tropkina
%T Parameterization of slow invariant manifolds in the model of the spread of malaria
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2012
%P 66-74
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2012_6_a8/
%G ru
%F VSGU_2012_6_a8
E. A. Tropkina. Parameterization of slow invariant manifolds in the model of the spread of malaria. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2012), pp. 66-74. http://geodesic.mathdoc.fr/item/VSGU_2012_6_a8/

[1] Sobolev V. A., Schepakina E. A., Reduktsiya modelei i kriticheskie yavleniya v makrokinetike, Fizmatlit, M., 2010, 319 pp. | Zbl

[2] Ross R., The Prevention of Malaria, John Murray, London, 1911

[3] Feng Z., Smith D. L., McKenzie F. E., Levin S. A., “Coupling ecology and evolution: malaria and the $\mathrm{S}$-gene across time scales”, Mathematical Biosciences, 2004, no. 189 | MR

[4] Sobolev V. A., “Decomposition of control systems with singular perturbations”, Proc. 10th Congr. IFAC (Munich, 1987), v. 8, 172–176

[5] Goldshtein V. M., Sobolev V. A., Kachestvennyi analiz singulyarno vozmuschennykh sistem, In-t matematiki AN SSSR. Sib. otd-nie, Novosibirsk, 1988

[6] McKenzie F. E., Why model malaria?, Parasitol. Today, 2000, no. 16, 511 | DOI

[7] Kononenko L. I., Sobolev V. A., “Asimptoticheskoe razlozhenie medlennykh integralnykh mnogoobrazii”, Sibirskii matematicheskii zhurnal, 35:6 (1994), 1264 | MR | Zbl

[8] Sobolev V. A., Tropkina E. A., “Asimptoticheskie razlozheniya medlennykh invariantnykh mnogoobrazii i reduktsiya modelei khimicheskoi kinetiki”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 52:1 (2012), 81–96 | MR | Zbl