Uniform exhaustivity criteria of a family of vector outer measures
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2012), pp. 58-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The uniform exhaustivity criteria are proved for a sequence of exhaustive outer measures defined on the non-sigma-complete class of sets and taking values in an Abelian topological group.
Keywords: outer measure, uniform exhaustivity of a family of set functions, $f_1$-property.
Mots-clés : multiplicative class of sets
@article{VSGU_2012_6_a7,
     author = {T. A. Sribnaya},
     title = {Uniform exhaustivity criteria of a family of vector outer measures},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {58--65},
     year = {2012},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2012_6_a7/}
}
TY  - JOUR
AU  - T. A. Sribnaya
TI  - Uniform exhaustivity criteria of a family of vector outer measures
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2012
SP  - 58
EP  - 65
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2012_6_a7/
LA  - ru
ID  - VSGU_2012_6_a7
ER  - 
%0 Journal Article
%A T. A. Sribnaya
%T Uniform exhaustivity criteria of a family of vector outer measures
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2012
%P 58-65
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2012_6_a7/
%G ru
%F VSGU_2012_6_a7
T. A. Sribnaya. Uniform exhaustivity criteria of a family of vector outer measures. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2012), pp. 58-65. http://geodesic.mathdoc.fr/item/VSGU_2012_6_a7/

[1] Cafiero F., “Sulle famigli di funzione additive d'insieme uniformente continyl”, Rend. Accad. Naz. Lincei, 181:12 (1952), 155–162 | MR

[2] Weber H., “Compactness in spaces of group-valued contents, the Vitali–Hahn–Saks theorem and Nikodym's boundness theorem”, Rocky Mountain J. Math., 16:2 (1986), 253–275 | DOI | MR | Zbl

[3] Andrea A. B., Lucia P., “The Brooks–Jewett Theorem on an Orthomodular Lattice”, Journ. of Math. Anal. and Appl., 154 (1991), 507–522 | DOI | MR | Zbl

[4] Lucia P., Traynor T., “Non commutative groupvalued measures on an orthomodular poset”, Math. Japonica, 40:2 (1994), 309–315 | MR | Zbl

[5] Sribnaya T. A., “Kriterii Kafero na ortomodulyarnom chastichno uporyadochennom mnozhestve”, Vestnik SamGU, 2002, no. 4(26), 23–30 | MR | Zbl

[6] Friniche F. I., “The Vitali–Hahn–Saks theorem for Boolean algebras with the subsequential interpolation property”, Proc. Amer. Math. Soc., 92:3 (1984), 362–366 | DOI | MR

[7] Haydon R., “Anon-reflexive Grothendich Space that does not contain $l_{\infty}$”, Israel J. Math., 40:1 (1981), 65–73 | DOI | MR

[8] Precupanu A. M., “On cetrain Nikodym type theorem for multimeasures”, An. st. Univ. “Al. I. Cuza” Iasi, s. I. Mat., 35 (1989), 93–100 | MR | Zbl

[9] Molto A., “On the Vitali–Hahn–Saks theorem”, Proc. Royal. Soc. Sect. A, 90 (1981), 163–173 | MR | Zbl

[10] Bade W. G., Curtis P. S., “The Wedderburn decomposition of commutative Banach algebras”, Amer. J. Math., 82:4 (1960), 851–856 | DOI | MR

[11] Schachermayer W., “On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras”, Dissertation Math., 214 (1982), 1–33 | MR

[12] Seever G. L., “Measures on $\mathrm{E}$-spase”, Frans. Amer. Math. Soc., 133 (1968), 267–280 | MR | Zbl