Slow integral manifolds with a change of stability
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2012), pp. 49-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the investigation of slow integral manifolds with a change of stability in the case of vector fast variable. The existence conditions of the gluing function are given. The problem of construction of the integral manifold with a change of stability for systems with vector fast and slow variables is solved.
Mots-clés : singular perturbations
Keywords: clutching function, integral manifold, change of stability.
@article{VSGU_2012_6_a6,
     author = {T. V. Simonova},
     title = {Slow integral manifolds with a change of stability},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {49--57},
     year = {2012},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2012_6_a6/}
}
TY  - JOUR
AU  - T. V. Simonova
TI  - Slow integral manifolds with a change of stability
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2012
SP  - 49
EP  - 57
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2012_6_a6/
LA  - ru
ID  - VSGU_2012_6_a6
ER  - 
%0 Journal Article
%A T. V. Simonova
%T Slow integral manifolds with a change of stability
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2012
%P 49-57
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2012_6_a6/
%G ru
%F VSGU_2012_6_a6
T. V. Simonova. Slow integral manifolds with a change of stability. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2012), pp. 49-57. http://geodesic.mathdoc.fr/item/VSGU_2012_6_a6/

[1] V. I. Arnold i dr., “Teoriya bifurkatsii”, Sovremennye problemy matematiki: Fundamentalnye napravleniya, 5, VINITI, M., 1986, 5–218

[2] Sobolev V. A., Schepakina E. A., Reduktsiya modelei i kriticheskie yavleniya v makrokinetike, Fizmatlit, M., 2010, 320 pp. | Zbl

[3] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973, 272 pp. | MR

[4] Schepakina E. A., “Prityagivayusche-ottalkivayuschie integralnye poverkhnosti v zadachakh goreniya”, Matematicheskoe modelirovanie, 14:3 (2002), 30–42 | MR

[5] Schepakina E. A., “Singulyarnye vozmuscheniya v zadache modelirovaniya bezopasnykh rezhimov goreniya”, Matematicheskoe modelirovanie, 15:8 (2003), 113–117

[6] Gorelov G. N., Sobolev V. A., Schepakina E. A., Singulyarno vozmuschennye modeli goreniya, SamVen, Samara, 1999, 185 pp.

[7] Sobolev V. A., Schepakina E. A., “Integralnye poverkhnosti so smenoi ustoichivosti”, Izvestiya RAEN. Ser.: MMMIU, 1:3 (1997), 151–175 | MR | Zbl

[8] Mitropolskii Yu. A., Lykova O. B., Integralnye mnogoobraziya v nelineinoi mekhanike, Nauka, M., 1975, 512 pp. | MR

[9] Strygin V. V., Sobolev V. A., Razdelenie dvizhenii metodom integralnykh mnogoobrazii, Nauka, M., 1988, 256 pp. | MR | Zbl