On reguliration multiple eigenvalue by reduction pseudoperturbation methods
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2012), pp. 35-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the base of the bifurcation theory methods it is considered the problem of the retaining multiple eigenvalues and relevant eigenvectors and roots elements. An approch is suggested which allows reduce algebraic multiple to unit, that is reduce the problem of the retaining multiple eigenvalues to simple. For construction iterated process applied pseudoperturbation methods.
Keywords: bifurcation theory methods, multiple eigenvalues, root number, reduction pseudoperturbation method.
@article{VSGU_2012_6_a4,
     author = {D. G. Rakhimov},
     title = {On reguliration multiple eigenvalue by reduction pseudoperturbation methods},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {35--41},
     year = {2012},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2012_6_a4/}
}
TY  - JOUR
AU  - D. G. Rakhimov
TI  - On reguliration multiple eigenvalue by reduction pseudoperturbation methods
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2012
SP  - 35
EP  - 41
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2012_6_a4/
LA  - ru
ID  - VSGU_2012_6_a4
ER  - 
%0 Journal Article
%A D. G. Rakhimov
%T On reguliration multiple eigenvalue by reduction pseudoperturbation methods
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2012
%P 35-41
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2012_6_a4/
%G ru
%F VSGU_2012_6_a4
D. G. Rakhimov. On reguliration multiple eigenvalue by reduction pseudoperturbation methods. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2012), pp. 35-41. http://geodesic.mathdoc.fr/item/VSGU_2012_6_a4/

[1] Loginov B. V., Rakhimov D. G., “O metode lozhnykh vozmuschenii pri nalichii obobschennykh zhordanovykh tsepochek”, Differentsialnye uravneniya i ikh prilozheniya, ed. M. S. Salakhitdinov, Fan, Tashkent, 1979, 113–125 | MR

[2] Loginov B. V., Rakhimov D. G., Sidorov N. A., “Development of M. K. Gavurin's Pseudoperturbation Method”, Fields Institute Communications, 2000, no. 25, 367–381 | MR | Zbl

[3] Loginov B. V., Makeeva O. V., Tsyganov A. V., “Utochnenie priblizhenno zadannykh zhordanovykh tsepochek lineinoi operator-funktsii spektralnogo parametra na osnove teorii vozmuschenii”, mezhvuz. sb. nauch. tr., Funktsionalnyi analiz, 38, Ulyanovsk, 2003, 52–62

[4] Gavurin M. K., “O metode lozhnykh vozmuschenii dlya nakhozhdeniya sobstvennykh znachenii”, ZhVM i MF, 1:5 (1961), 751–770 | MR

[5] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh integralnykh uravnenii, Nauka, M., 1969 | MR

[6] Loginov B. V., Makeeva O. V., “Pseudoperturb iteration methods generalized eigenvalue problems”, ROMAI Journal, 1:1 (2008), 149–168 | MR | Zbl

[7] Loginov B. V., Makeeva O. V., “Metod lozhnykh vozmuschenii v obobschennykh zadachakh na sobstvennye znacheniya”, Doklady RAN. Ser.: Matematika, 419:2 (2008), 160–163 | MR | Zbl

[8] Rakhimov D. G., “O vychislenii kratnykh fredgolmovykh tochek diskretnogo spektra lineinykh operator-funktsii metodom lozhnykh vozmuschenii”, Zhurnal Srednevolzhskogo mat. ob-va, 12:2 (2010), 106–112 | MR

[9] Loginov B. V., Rusak Yu. B., “Obobschennaya zhordanova struktura v teorii vetvleniya”, Pryamye i obratnye zadachi dlya uravnenii s chastnymi proizvodnymi, ed. M. S. Salakhitdinov, Fan, Tashkent, 1978, 133–148 | MR

[10] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1964

[11] Makeeva O. V., Metod lozhnykh vozmuschenii v obobschennoi zadache na sobstvennye znacheniya, Dis. ... kand. fiz.-mat. nauk, Ulyanovsk, 2007