Nonlinear resonance in oscillatory circuit with fractal capacity
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2012), pp. 136-142
Voir la notice de l'article provenant de la source Math-Net.Ru
A model of oscillation circuit containing a nonlinear fractal component of capacity is proposed. The differential equation of motion of fractional order for forced oscillations under the action of an external signal is obtained. An approximate analytical solution of the equation of motion is conducted by methods of equivalent linearization and slowly varying amplitudes. The amplitude-frequency and phase response of fractional oscillator with cubic nonlinearity are analyzed.
Keywords:
fractional dynamics, oscillating systems, slowly varying amplitudes, nonlinear resonance.
@article{VSGU_2012_6_a13,
author = {V. V. Zaitsev and Ar. V. Karlov},
title = {Nonlinear resonance in oscillatory circuit with fractal capacity},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {136--142},
publisher = {mathdoc},
number = {6},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2012_6_a13/}
}
TY - JOUR AU - V. V. Zaitsev AU - Ar. V. Karlov TI - Nonlinear resonance in oscillatory circuit with fractal capacity JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2012 SP - 136 EP - 142 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2012_6_a13/ LA - ru ID - VSGU_2012_6_a13 ER -
V. V. Zaitsev; Ar. V. Karlov. Nonlinear resonance in oscillatory circuit with fractal capacity. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2012), pp. 136-142. http://geodesic.mathdoc.fr/item/VSGU_2012_6_a13/