Nonlinear resonance in oscillatory circuit with fractal capacity
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2012), pp. 136-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model of oscillation circuit containing a nonlinear fractal component of capacity is proposed. The differential equation of motion of fractional order for forced oscillations under the action of an external signal is obtained. An approximate analytical solution of the equation of motion is conducted by methods of equivalent linearization and slowly varying amplitudes. The amplitude-frequency and phase response of fractional oscillator with cubic nonlinearity are analyzed.
Keywords: fractional dynamics, oscillating systems, slowly varying amplitudes, nonlinear resonance.
@article{VSGU_2012_6_a13,
     author = {V. V. Zaitsev and Ar. V. Karlov},
     title = {Nonlinear resonance in oscillatory circuit with fractal capacity},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {136--142},
     year = {2012},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2012_6_a13/}
}
TY  - JOUR
AU  - V. V. Zaitsev
AU  - Ar. V. Karlov
TI  - Nonlinear resonance in oscillatory circuit with fractal capacity
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2012
SP  - 136
EP  - 142
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2012_6_a13/
LA  - ru
ID  - VSGU_2012_6_a13
ER  - 
%0 Journal Article
%A V. V. Zaitsev
%A Ar. V. Karlov
%T Nonlinear resonance in oscillatory circuit with fractal capacity
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2012
%P 136-142
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2012_6_a13/
%G ru
%F VSGU_2012_6_a13
V. V. Zaitsev; Ar. V. Karlov. Nonlinear resonance in oscillatory circuit with fractal capacity. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2012), pp. 136-142. http://geodesic.mathdoc.fr/item/VSGU_2012_6_a13/

[1] Tarasov V. E., Modeli teoreticheskoi fiziki s integrodifferentsirovaniem drobnogo poryadka, Izhevskii institut kompyuternykh issledovanii, M.–Izhevsk, 2011, 568 pp.

[2] Zaslavsky G. M., Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford, 2005 | MR | Zbl

[3] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp. | Zbl

[4] Schafer I., Kempfle S., “Impulse Responses of Fractional Damped Systems”, Nonlinear Dynamics, 38 (2004), 61–68 http://www.springerlink.com/content/q18044030l74042l/fulltext.pdf | DOI | MR

[5] Yuan L., Agrawal O. P., “A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives”, Proc. of ASME Design Engineering Technical Conferences (Atlanta, 1998) http://me.engr.siu.edu/MEEP_old/faculty/agrawal/mech5857.pdf

[6] Zaitsev V. V., Karlov A. V., Yarovoi G. P., “Dinamika avtokolebanii drobnogo tomsonovskogo ostsillyatora”, Fizika volnovykh protsessov i radiotekhnicheskie sistemy, 15:1 (2012)

[7] Zaitsev V. V., Karlov A. V., Stulov I. V., “Sinkhronizatsiya drobnogo ostsillyatora Van-der-Polya”, Vestnik SamGU. Estestvennonauchnaya seriya, 2012, no. 3/1(94), 116–122

[8] Khayasi T., Nelineinye kolebaniya v fizicheskikh sistemakh, Mir, M., 1968, 432 pp.

[9] Westerlund S., “Dead matter has memory”, Physica Scripta, 43:2 (1991), 174–179 | DOI

[10] Sibatov R. T. i dr., “Drobno-differentsialnye uravneniya dlya dielektricheskoi sredy s chastotnym otklikom Gavrilyaka–Negami”, Nelineinyi mir, 9:5 (2011), 394–400

[11] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, 4-e izd., Nauka, M., 1974, 504 pp. | MR

[12] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp. | MR | Zbl