Compelled axysimmetric flexural fluctuations of thick round rigid piezoceramic plate
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2012), pp. 124-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New closed solution of axisymmetric nonstationary problem of the theory of electroelasticity for thick round piezoceramic plate with rigid of its external radial surface is constructed. Calculated relations are obtained by method of expansion in eigen vector functions in the form of structural algorithm of finite transformations. Numerical results allow to define the natural-vibration frequency, the stress-strain state of the testing element, and also the potential and intensity of the induced electric field.
Keywords: compelled axisymmetric fluctuations, thick piezoceramic plate, problem of electroelasticity.
@article{VSGU_2012_6_a12,
     author = {D. A. Shljakhin},
     title = {Compelled axysimmetric flexural fluctuations of thick round rigid piezoceramic plate},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {124--135},
     year = {2012},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2012_6_a12/}
}
TY  - JOUR
AU  - D. A. Shljakhin
TI  - Compelled axysimmetric flexural fluctuations of thick round rigid piezoceramic plate
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2012
SP  - 124
EP  - 135
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2012_6_a12/
LA  - ru
ID  - VSGU_2012_6_a12
ER  - 
%0 Journal Article
%A D. A. Shljakhin
%T Compelled axysimmetric flexural fluctuations of thick round rigid piezoceramic plate
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2012
%P 124-135
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2012_6_a12/
%G ru
%F VSGU_2012_6_a12
D. A. Shljakhin. Compelled axysimmetric flexural fluctuations of thick round rigid piezoceramic plate. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2012), pp. 124-135. http://geodesic.mathdoc.fr/item/VSGU_2012_6_a12/

[1] Grinchenko V. T., Ulitko A. F., Ulitko N. A., Mekhanika svyazannykh polei v elementakh konstruktsii, Nauk. dumka, Kiev, 1989, 279 pp. | Zbl

[2] Shulga N. A., Bolkisev A. M., Kolebaniya pezoelektricheskikh tel, Nauk. dumka, Kiev, 1990, 228 pp.

[3] Hussein M., Heyliger P. R., “Discrete layer Analysis of Axisymmetric Vibrations of Laminated Piezoelectric Cylinders”, J. of Sound and Vibration, 192:5 (1996), 995–1013 | DOI | Zbl

[4] Grigorenko A. Ya., Efimova T. L., Loza I. A., “Ob odnom podkhode k issledovaniyu kolebanii polykh pezokeramicheskikh tsilindrov konechnoi dliny”, Doklady NAN Ukrainy, 2009, no. 6, 61–66

[5] Senitskii Yu. E., “Dinamicheskaya zadacha elektrouprugosti dlya neodnorodnogo tsilindra”, PMM, 57:1 (1993), 116–122

[6] Shlyakhin D. A., “Nestatsionarnaya osesimmetrichnaya zadacha elektrouprugosti dlya pezokeramicheskogo tsilindra s okruzhnoi polyarizatsiei”, PMiTF, 50:1 (2009), 12–21

[7] Parton V. Z., Kudryavtsev B. A., Elektromagnitouprugost pezoelektricheskikh i elektroprovodnykh tel, Nauka, M., 1988, 470 pp.

[8] Shlyakhin D. A., “Vynuzhdennye osesimmetrichnye izgibnye kolebaniya tolstoi krugloi zhestko zakreplennoi plastiny”, Vestnik SamGU. Estestvennonauchnaya seriya, 2011, no. 8(89), 142–152

[9] A. N. Guz (red.), Prostranstvennye zadachi teorii uprugosti i plastichnosti, v. 3, Nauk. dumka, Kiev, 1985, 280 pp.