The theorem of averaging for the almost-periodic functions
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2012), pp. 100-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that the limit of maximal mean is an independent variable of initial conditions if a vector exists from the convex hull of a compact set out of a finite-dimensional space and the components of vector are independent variables with respect to the spectrum of almost-periodic function. The compact set is the right hand of differential inclusion. The limit of maximal mean is taken over all solutions of the Couchy problem for the differential inclusion.
Keywords: limit of maximal mean, theorem of averaging, differential inclusion, compact right hand, almost-periodic function, independent frequencies with respect to spectrum.
@article{VSGU_2012_6_a10,
     author = {O. P. Filatov},
     title = {The theorem of averaging for the almost-periodic functions},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {100--112},
     year = {2012},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2012_6_a10/}
}
TY  - JOUR
AU  - O. P. Filatov
TI  - The theorem of averaging for the almost-periodic functions
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2012
SP  - 100
EP  - 112
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2012_6_a10/
LA  - ru
ID  - VSGU_2012_6_a10
ER  - 
%0 Journal Article
%A O. P. Filatov
%T The theorem of averaging for the almost-periodic functions
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2012
%P 100-112
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2012_6_a10/
%G ru
%F VSGU_2012_6_a10
O. P. Filatov. The theorem of averaging for the almost-periodic functions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2012), pp. 100-112. http://geodesic.mathdoc.fr/item/VSGU_2012_6_a10/

[1] Filatov O. P., Khapaev M. M., Usrednenie sistem differentsialnykh vklyuchenii, Izd-vo MGU, M., 1998, 160 pp. | MR

[2] Filatov O. P., Usrednenie differentsialnykh vklyuchenii i predely maksimalnykh srednikh, Izd-vo “Univers grupp”, Samara, 2009, 176 pp.

[3] Filatov O. P., “Suschestvovanie predelov maksimalnykh srednikh”, Matematicheskie zametki, 67:3 (2000), 433–440 | DOI | MR | Zbl

[4] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989, 362 pp. | MR

[5] Levitan B. M., Pochti periodicheskie funktsii, Gostekhteorizdat, M., 1953, 396 pp. | Zbl

[6] Filatov O. P., “Teorema ob usrednenii dlya neopredelennykh uslovno-periodicheskikh dvizhenii”, Matematicheskie zametki, 90:2 (2011), 318–320 | DOI | MR | Zbl

[7] Filatov O. P., “Teorema usredneniya i neopredelennye uslovno-periodicheskie dvizheniya”, Vestnik Samarskogo gosuniversiteta. Estestvennonauchnaya seriya, 2010, no. 6(80), 87–92

[8] Filatov O. P., “Vychislenie predelov maksimalnykh srednikh”, Matematicheskie zametki, 59:5 (1996), 759–767 | DOI | MR | Zbl

[9] Blagodatskikh V. I., Filippov A. F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Trudy matematicheskogo instituta AN SSSR, 1985, 194–252 | MR | Zbl