The spaces that contain multiplicative eta-functions
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2012), pp. 5-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article we study the structure of the spaces of modular forms that contain the multiplicative eta-functions.We find dimensions and basises. We also study the behavior of the functions in cusps.
Keywords: spaces of modular forms, Dedekind eta-function, cusps.
@article{VSGU_2012_6_a0,
     author = {G. V. Voskresenskaya},
     title = {The spaces that contain multiplicative eta-functions},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {5--12},
     year = {2012},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2012_6_a0/}
}
TY  - JOUR
AU  - G. V. Voskresenskaya
TI  - The spaces that contain multiplicative eta-functions
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2012
SP  - 5
EP  - 12
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2012_6_a0/
LA  - ru
ID  - VSGU_2012_6_a0
ER  - 
%0 Journal Article
%A G. V. Voskresenskaya
%T The spaces that contain multiplicative eta-functions
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2012
%P 5-12
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2012_6_a0/
%G ru
%F VSGU_2012_6_a0
G. V. Voskresenskaya. The spaces that contain multiplicative eta-functions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2012), pp. 5-12. http://geodesic.mathdoc.fr/item/VSGU_2012_6_a0/

[1] Biagioli A. J. F., “The construction of modular forms as products of transforms of the Dedekind eta-function”, Acta Arithm., LIV (1990), 273–300 | MR | Zbl

[2] Dummit D., Kisilevsky H., MacKay J., “Multiplicative products of $\eta$-functions”, Contemp. Math., 45, 1985, 89–98 | DOI | MR | Zbl

[3] Martin Y., “Multiplicative eta-quotients”, Trans. Amer. Math. Soc., 348 (1996), 4825–4856 | DOI | MR | Zbl

[4] Mason G., “Finite groups and Hecke operators”, Math. Ann., 283 (1989), 381–409 | DOI | MR | Zbl

[5] Newman M., “Construction and application of a certain class of modular forms”, Proc. L. M. S., 7 (1956), 334–350 | DOI | MR

[6] Ono K., The web of modularity: arithmetic of the coefficients of modular forms and q-series, Amer. Math. Soc., Providence, 2004, 216 pp. | MR

[7] Voskresenskaya G. V., “One special class of modular forms and group representations”, Journal de Theorie des Nombres de Bordeaux, 11 (1999), 247–262 | DOI | MR | Zbl