Keywords: theory of elasticity, the Sturm–Liouville vector.
@article{VSGU_2011_8_a5,
author = {A. A. Malyshev and O. E. Yaremko},
title = {Fourier vector transformation with discontinuous coefficients in the theory of elasticity},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {50--58},
year = {2011},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2011_8_a5/}
}
TY - JOUR AU - A. A. Malyshev AU - O. E. Yaremko TI - Fourier vector transformation with discontinuous coefficients in the theory of elasticity JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2011 SP - 50 EP - 58 IS - 8 UR - http://geodesic.mathdoc.fr/item/VSGU_2011_8_a5/ LA - ru ID - VSGU_2011_8_a5 ER -
%0 Journal Article %A A. A. Malyshev %A O. E. Yaremko %T Fourier vector transformation with discontinuous coefficients in the theory of elasticity %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2011 %P 50-58 %N 8 %U http://geodesic.mathdoc.fr/item/VSGU_2011_8_a5/ %G ru %F VSGU_2011_8_a5
A. A. Malyshev; O. E. Yaremko. Fourier vector transformation with discontinuous coefficients in the theory of elasticity. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2011), pp. 50-58. http://geodesic.mathdoc.fr/item/VSGU_2011_8_a5/
[1] Grinchenko V. T., Ulitko A. F., Shulga N. A., Dinamika svyaznykh polei v elementakh konstruktsii. Elektrouprugost, Naukova dumka, Kiev, 1989 ; 279 | Zbl
[2] Uflyand Ya. S., Integralnye preobrazovaniya v zadachakh teorii uprugosti, Nauka, L., 1967, 402 pp. | MR
[3] Uflyand Ya. S., “O nekotorykh novykh integralnykh preobrazovaniyakh i ikh prilozheniyakh k zadacham matematicheskoi fiziki”, Voprosy matematicheskoi fiziki, L., 1976, 93–106
[4] Naida L. S., “Gibridnye integralnye preobrazovaniya tipa Khankelya–Lezhandra”, Mat. metody analiza dinam. sistem, 8 (1984), 132–135
[5] Protsenko V. S., Solovev A. I., “Nekotorye gibridnye integralnye preobrazovaniya i ikh prilozheniya v teorii uprugosti neodnorodnykh sred”, Prikladnaya mekhanika, 13:1 (1982), 62–67 | MR
[6] Protsenko B. C., Golovchenko A. V., “Obobschennoe integralnoe preobrazovanie tipa Fure–Lezhandra”, Mat. metody analiza. Kharkov, 1982, no. 6, 26–28
[7] Lenyuk M. P., “Gibridnye integralnye preobrazovaniya (Besselya, Lezhandra, Besselya)”, Ukr. matem. zhurnal, 43:6 (1991), 770–779 | MR | Zbl
[8] Lenyuk M. P., “Gibridnye integralnye preobrazovaniya (Besselya, Fure, Besselya)”, Matem. fizika i nelineinaya mekhanika, 1989, no. 12(46), 68–74 | MR
[9] Lenyuk M. P., “Integralnoe preobrazovanie Fure na kusochno-odnorodnoi polupryamoi”, Izv. vuzov. Ser. Matematika, 4 (1989), 14–18 | MR
[10] Yaremko O. E., “Matrichnye integralnye preobrazovaniya Fure dlya zadach s razryvnymi koeffitsientami i operatory preobrazovaniya”, Doklady RAN, 417:3 (2007), 323–325 | MR | Zbl
[11] Bavrin I. I., Matrosov V. L., Yaremko O. E., Operatory preobrazovaniya v analize, matematicheskoi fizike i teorii raspoznavaniya obrazov, Prometei, M., 2006, 292 pp.
[12] Sudakov R. S., Prostye metody prikladnoi teorii matrits, RKhD, M., 2005, 450 pp.
[13] Breisuell R., Preobrazovanie Khartli, Mir, M., 1990, 584 pp. | MR
[14] Sneddon I., Preobrazovanie Fure, Inostr. lit., M., 1955, 668 pp.
[15] Landau L. D., Lifshits E. M., Teoreticheskaya fizika: Teoriya uprugosti, v. 7, Nauka, M., 1987, 247 pp. | MR | Zbl
[16] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, 7-e izd., Nauka, M., 2004, 743 pp.
[17] Akhtyamov A. M., Sadovnichii V. A., Sultanaev Ya. T., Obratnye zadachi Shturma–Liuvillya s neraspadayuschimisya kraevymi usloviyami, Izd-vo Moskovskogo universiteta, M., 2009
[18] Obolashvili E. I., Preobrazovaniya Fure i ego primenenie v teorii uprugosti, Metsniereba, Tbilisi, 1979, 230 pp. | MR | Zbl
[19] Sneddon I. N., Beri D. S., Klassicheskaya teoriya uprugosti, Vuzovskaya kniga, M., 2008, 215 pp.