The system of shifts of functions
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2011), pp. 37-44
Cet article a éte moissonné depuis la source Math-Net.Ru
The system of shift of functions $\left(T_{\lambda _{k}}g\left(x\right)\right)_{n\in \mathbb{Z}}$ in $L^{2}\left(\mathbb{R}\right)$ space is considered in this paper, where $\lambda_{n}\in \mathbb{R}$. We find conditions on real sequence $\left(\lambda_{n}\right)$ which provide such properties of the system as to be a frame, Bessel system, complete sequence in the space $L^{2}\left(\mathbb{R}\right)$.
Keywords:
Bessel sequence, frame, shift operator, complete systems.
@article{VSGU_2011_8_a3,
author = {E. S. Klimova},
title = {The system of shifts of functions},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {37--44},
year = {2011},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2011_8_a3/}
}
E. S. Klimova. The system of shifts of functions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2011), pp. 37-44. http://geodesic.mathdoc.fr/item/VSGU_2011_8_a3/
[1] Christensen O., An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2002 | MR
[2] Seip C., “On the connection between exponential bases and certain related sequences in $L^2[-\pi ,\pi]$”, Jornal of Functional Anal. Mathematics, 1995, no. 130, 131–160 | DOI | MR | Zbl
[3] Golubeva E. S., “Freimy eksponent so stepennym vesom”, Vestnik Samarskogo gosudarstvennogo universiteta, 2011, no. 2 | MR
[4] Kadets M. I., “Tochnoe znachenie postoyannoi Paleya-Vinera”, Doklady Akademii nauk SSSR, 155:6 (1964) | Zbl
[5] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, AFTs, M., 1999 | MR | Zbl
[6] Freizer M., Vvedenie v veivlety v svete lineinoi algebry, BINOM, M., 2008