A mixed problem with integral condition for a degenerative equation of the hyperbolic type
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2011), pp. 29-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, the mixed problem for the hyperbolic degenerate equation with an integral condition is considered. The existence and uniqueness of a generalized solution are proved.
Keywords: degenerate equation, integral condition, generalized solution, apriori estimate, regularization method, Galerkin method.
@article{VSGU_2011_8_a2,
     author = {S. V. Kirichenko},
     title = {A mixed problem with integral condition for a~degenerative equation of the hyperbolic type},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {29--36},
     year = {2011},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2011_8_a2/}
}
TY  - JOUR
AU  - S. V. Kirichenko
TI  - A mixed problem with integral condition for a degenerative equation of the hyperbolic type
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2011
SP  - 29
EP  - 36
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/VSGU_2011_8_a2/
LA  - ru
ID  - VSGU_2011_8_a2
ER  - 
%0 Journal Article
%A S. V. Kirichenko
%T A mixed problem with integral condition for a degenerative equation of the hyperbolic type
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2011
%P 29-36
%N 8
%U http://geodesic.mathdoc.fr/item/VSGU_2011_8_a2/
%G ru
%F VSGU_2011_8_a2
S. V. Kirichenko. A mixed problem with integral condition for a degenerative equation of the hyperbolic type. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2011), pp. 29-36. http://geodesic.mathdoc.fr/item/VSGU_2011_8_a2/

[1] Kozhanov A. I., Pulkina L. S., “Kraevye zadachi s integralnym granichnym usloviem dlya mnogomernykh giperbolicheskikh uravnenii”, DAN, 404:5 (2005), 589–592 | MR | Zbl

[2] Gordeziani D. G., Avalishvili G. A., “Resheniya nelokalnykh zadach dlya odnomernykh kolebanii sredy”, Matem. modelirovanie, 12:1 94–103 (2000) | MR | Zbl

[3] Pulkina L. S., “Nachalno-kraevaya zadacha s nelokalnym granichnym usloviem dlya mnogomernogo giperbolicheskogo uravneniya”, Differentsialnye uravneniya, 44:8 (2008), 1084–1089 | MR

[4] Pulkina L. S., “Smeshannaya zadacha s integralnym usloviem dlya giperbolicheskogo uravneniya”, Matem. zametki, 74:3 (2003), 435–445 | DOI | MR

[5] Beilin S. A., “Smeshannaya zadacha s integralnym usloviem dlya volnovogo uravneniya”, Neklassicheskie uravneniya matematicheskoi fiziki, sb. nauch. trudov, Novosibirsk, 2005, 37–43 | Zbl

[6] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1974, 331 pp.

[7] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR